Kategori
Konsultasi Susun Skripsi

Penjelasan Software UCINET VI, Menganalisa Struktur Jaringan Sosial

Penjelasan software UCINET VI adalah perangkat lunak yang berfungsi untuk menganalisis jaringan sosial. Perangkat lunak ini dikembangkan oleh Lin Freeman, Martin Everett, dan Steve Borgatti. Software ini berfungsi untuk menganalisis berbagai jenis jaringan sosial. Termasuk jaringan kerja, jaringan pertemanan, dan jaringan keluarga.

Penjelasan Software UCINET VI

Jaringan sosial telah menjadi subjek penelitian yang semakin penting dalam berbagai disiplin ilmu. Dalam rangka menggali wawasan mendalam dari data jaringan, perangkat lunak UCINET hadir sebagai alat analisis yang tangguh dan andal. 

Software ini memberikan kemampuan bagi para peneliti dan analis untuk mengimpor, menganalisis, dan memvisualisasikan data jaringan secara efektif. Berikut ini adalah beberapa fitur utama yang membuat software tersebut menjadi pilihan utama dalam analisis jaringan.

Fitur-Fitur Utama

Input Data yang Fleksibel

Salah satu fitur paling penting dari UCINET adalah kemampuannya untuk mengimpor data jaringan dari berbagai sumber. Pengguna dapat dengan mudah mengimpor data dari tabel hubungan antar entitas atau matriks hubungan. Sehingga fleksibilitas ini memungkinkan peneliti untuk bekerja dengan berbagai jenis data jaringan. Termasuk data yang berasal dari survei, media sosial, atau sumber-sumber lainnya.

Analisis Jaringan yang Mendalam

UCINET menawarkan berbagai algoritma analisis jaringan yang kuat untuk membantu pengguna mengungkap pola dan struktur dalam data jaringan. Dengan algoritma analisis sentralitas, koheasi, jarak, dan banyak lagi, pengguna dapat memahami peran penting setiap entitas dalam jaringan. Sehingga dapat mengidentifikasi kelompok-kelompok yang saling terhubung, serta mengukur seberapa dekat atau jauhnya entitas-entitas dalam jaringan.

Visualisasi yang Menyajikan Insight

Visualisasi grafis memainkan peran penting dalam penjelasan software UCINET VI. Anda dapat memahami dan mengkomunikasikan informasi dari data jaringan. 

UCINET memungkinkan pengguna untuk membuat berbagai jenis visualisasi grafis. Termasuk diagram simpul-garis yang menggambarkan hubungan antar entitas, serta grafik matriks yang menyoroti pola keterhubungan. Sehingga, visualisasi ini mempermudah peneliti untuk melihat dan menginterpretasikan struktur jaringan secara lebih intuitif.

Statistik Deskriptif yang Informatif

Dengan fitur statistik deskriptif, UCINET memungkinkan pengguna untuk menghasilkan gambaran menyeluruh tentang karakteristik jaringan. Kemudian juga mendukung distribusi sentralitas, ukuran komponen terbesar, dan statistik lainnya. Sehingga memberikan wawasan tentang distribusi kekuatan dan keterhubungan dalam jaringan.

Itulah penjelasan software UCINET VI yang sangat berfungsi untuk menganalisa jaringan sosial saat ini. Dengan fitur-fitur utama yang kuat dan komprehensif, UCINET menjadi alat yang penting dalam menggali potensi data jaringan. Analisis jaringan sosial menjadi lebih mudah dan efisien. Sehingga membuka pintu bagi pemahaman yang lebih dalam tentang dunia yang kompleks ini.

Baca Juga:

Penjelasan Software Design Expert dalam Optimasi Sediaan Farmasi

Kategori
Konsultasi Susun Skripsi

Penjelasan Software Design Expert dalam Optimasi Sediaan Farmasi

Sangat penting memahami penjelasan software Design Expert secara singkat agar sebelum mengoperasikannya Anda sudah sedikit tahu konsep penggunaan dari aplikasi satu ini. Aplikasi ini bisa di pakai untuk menunjang formulasi berbagai obat tradisional.

Contohnya seperti kapsul dan tablet. Selain itu, bisa di pakai untuk menunjang formulasi drug delivery sistem. Contohnya seperti tablet lepas lambat, targeted drug delivery (etosom, liposom serta nano partikel).

Sebenarnya dari segi pemakaian tidak terbatas pada bidang kefarmasian. Aplikasi ini bisa di pakai dalam menunjang proses optimasi dari penelitian komposisi optimal campuran minyak nabati yang berperan sebagai bahan baku sintesis biodiesel. 

Inilah Penjelasan Software Design Expert sebagai Alat Optimasi Formulasi Sediaan Farmasi

Aplikasi metode statistik Design Expert pertama kali rilis pada tahun 1996 silam dengan pihak pemroduksinya adalah statease. Salah satu fungsinya adalah untuk membantu melakukan desain eksperimental.

Contoh penerapannya pada proses penentuan formula optimum sebuah sediaan. Penjelasan software Design Expert selanjutnya adalah mengapa ketika formulasi di lakukan menggunakan aplikasi ini terasa lebih menguntungkan.

Salah satu alasannya karena dalam tahapannya sudah menyediakan panduan yang memberikan arahan. Selain itu, bisa di pilih menyesuaikan dengan tujuan dari DOE atau design of experiments yang akan di laksanakan.

Manfaat lainnya dari penggunaan software satu ini adalah mampu menginterpretasikan berbagai faktor dalam aktivitas percobaan. Di dalam software ini, terbagi atas tiga opsi arah penelitian. Pemilihan opsinya menyesuaikan dengan desain percobaannya.

Tiga opsi di maksud mencakup screening, characterization serta optimization.  Supaya lebih paham mengenai perbedaan ketiga opsi ini, Anda dapat menyimak uraian lebih lengkap berikut:

  1. Screening

Penjelasan software Design Expert bagian screening, yang memerlukan run sekaligus informasi paling sedikit. Run merupakan banyaknya jumlah eksperimen yang harus di laksanakan menyesuaikan desain eksperimental dipilih.

Pemakaian screening adalah saat mempunyai banyak faktor yang memungkinkan (>6). Tapi, tidak di ketahui manakah yang efeknya nyata. Untuk memperkirakan interaksi serta persyaratan lebih jauh, membutuhkan tindak lanjut menuju DOE ke-2.

  1. Characterization

Di bandingkan sebelumnya, characterization membutuhkan lebih banyak run per faktornya. Informasi yang di berikan juga lebih banyak. Bagian ini dipakai hanya dengan beberapa faktor (<10).

  1. Optimization

Bagian terakhir yaitu optimazion yang memerlukan paling banyak informasi sekaligus run per faktor. Pemakaian bagian ini sesudah melakukan penyempitan daftar faktor (<6). Dengan kondisi di mana kemungkinan optimumnya terdapat di daerah yang sedang di uji.

Sebaiknya sebelum menggunakan Design Expert, pahami konsep penggunaannya serta setiap fitur yang di miliki. Termasuk juga penjelasan software Design Expert singkat di atas agar nantinya memudahkan dalam pengoperasian.

Meta Keyword: Penjelasan software Design Expert

Meta Deskripsi: Sangat penting memahami penjelasan software Design Expert agar sebelum mengoperasikannya Anda sudah sedikit tahu konsep penggunaan dari aplikasi satu ini.

Baca Juga:

Sekilas Penjelasan Software Netlogo serta Fitur Unggulannya

Kategori
Konsultasi Susun Skripsi

Teknologi GWGPR & GWNBR (R), Meningkatkan Eksplorasi dalam Tanah!

GWGPR & GWNBR (R) menjadi salah satu metode inovatif bidang eksplorasi dalam tanah. Eksplorasi dan pemahaman mengenai dalam tanah selalu menjadi hal yang krusial berbagai bidang. 

Termasuk teknik sipil, geologi, arkeologi, dan studi lingkungan. Metode-metode tradisional untuk penyelidikan dalam tanah seringkali memakan waktu. 

Bahkan membutuhkan tenaga kerja banyak dan bersifat invasif. Namun, dengan munculnya teknologi-teknologi canggih membawa perubahan perubahan besar bidang eksplorasi. 

Pengertian

Ground-Penetrating Radar adalah metode geofisika non-destruktif menggunakan gelombang elektromagnetik berfrekuensi tinggi menyelidiki dalam tanah. Sistem GPR terdiri dari antena pemancar mengirimkan pulsa elektromagnetik. 

Dan antena penerima yang merekam pantulan dari batas-batas nya. Waktu yang dibutuhkan oleh sinyal untuk kembali ke penerima digunakan untuk menentukan kedalaman. Teknik GPR telah diterapkan secara luas dalam berbagai bidang:

  1. Teknik Sipil
  2. Arkeolog
  3. Geologi dan Pertambangan
  4. Studi Lingkungan
  5. Pencarian dan Penyelamatan

Meskipun memiliki banyak keuntungan, GPR juga memiliki keterbatasan. Terutama terkait dengan kedalaman penetrasi dan resolusi. 

Reduksi sinyal dalam beberapa jenis material geologi dapat membatasi kedalaman investigasinya. Selain itu, interpretasi data GPR memerlukan keahlian khusus. 

Air tanah adalah sumber daya alam yang berharga. Dan karakterisasi air tersebut menjadi hal yang penting untuk pengelolaan air yang berkelanjutan. 

Secara konvensional, pemboran sumur dan instalasi sumur pemantau digunakan untuk mengakses data air tanah. Tetapi metode GWGPR & GWNBR (R) dapat mahal dan bersifat invasif. 

Pengembangan Groundwater Non-Invasive Characterization using Borehole Radar (GWNBR) telah mengubah cara kita mempelajari sumber daya air dalam tanah. GWNBR menggunakan teknologi radar di dalam sumur bor. 

Tujuannya untuk menyelidiki properti-properti di sekitar nya tanpa perlu mengambil sampel fisik. Aplikasi-aplikasi GWNBR meliputi:

  1. Hidrogeologi
  2. Pemetaan Polusi
  3. Teknik Geoteknik
  4. Manajemen Sumber Daya Air

Integrasi GWGPR & GWNBR (R)

Baik GPR maupun GWNBR adalah alat-alat non-invasif yang sangat kuat. Sehingga saling melengkapi ketika digunakan bersama-sama. 

GPR efektif untuk mengkarakterisasi area luas dari permukaan tanah. Memberikan gambaran umum mengenai fitur-fitur nya. 

Di sisi lain, GWNBR menawarkan informasi detail pada kedalaman tertentu. Terutama berharga untuk mempelajari masalah-masalah yang berkaitan dengan air tanah.

Menggabungkan keuntungan dari cakupan area yang luas dan pencitraan resolusi tinggi. Integrasi GWGPR & GWNBR (R) memungkinkan peneliti dan praktisi untuk mendapatkan pemahaman komprehensif mengenai dalam tanah. 

Baca Juga:

Mengenal Aplikasi ATLAS.ti, Memperdalam Analisis Kualitatif dalam Penelitian

Kategori
Jasa Skripsi Tesis Disertasi Konsultasi Susun Skripsi Uncategorized

Berkenalan dengan Design of Experiments (DoE)

Design of Experiments memiliki peran yang penting dalam berbagai bidang khususnya pada bidang bisnis. Bisa juga dikatakan bahwa DoE merupakan salah satu teknik untuk merencanakan dan merancang suatu eksperimen dari sebuah produk, sistem, dan proses. Melihat luasnya fungsi dari DoE ini, maka tidak heran banyak yang memanfaatkan teknik DoE ini.

Apa Itu Design of Experiments?

Agar lebih memahami dan mengerti mengenai DoE tentunya Anda harus tahu apa pengertian dari istilah DoE, bukan? Selanjutnya Anda bisa mempelajari apa saja manfaat dari DoE. Teknik DoE bisa Anda proses menggunakan aplikasi bernama Design Expert. Aplikasi ini akan memudahkan Anda untuk mengaplikasikan teknik DoE ini.

Di bawah ini adalah pembahasan singkat mengenai DoE yang dapat Anda simak. Pahami betul agar Anda tidak kesulitan untuk memasukkan teknik ini pada kerangka berpikir Anda.

Pengertian

Design of Experiments atau yang lebih pendeknya DoE adalah suatu perkakas untuk menemukan faktor-faktor yang memberikan pengaruh signifikan terhadap kualitas, korelasi, serta menghitung besarnya pengaruh tersebut. Metode statistik ini bermanfaat untuk meningkatkan kualitas dari sebuah produk, sistem, dan proses sekalipun.

Macam-Macam Metode Design of Experiments

DoE memiliki beberapa macam metode yang dapat Anda pilih dan aplikasikan menggunakan Design Expert. Berikut ini adalah beberapa metode dari DoE yang dapat Anda pelajari dan ketahui.

Desain Faktorial

Metode desain ini bertujuan untuk mencari tahu interaksi antara faktor-faktor yang Anda uji. Anda dapat melihat apakah faktor tersebut saling mendukung atau saling menghambat saut sama lain.

Desain Mixture

DoE dengan metode desain mixture dapat Anda gunakan untuk mencari formulasi yang paling optimal antara campuran yang terdiri dari 2 hingga 24 komponen yang berbeda.

Metode Taguchi

Bagi Anda yang ingin membuat produk, sistem, atau proses berkualitas tinggi dengan biaya rendah akan sangat tepat bila menggunakan metode Taguchi.

Metode RSM

Metode ini lebih cocok untuk menentukan hubungan fungsional antara variabel respon dan variabel independen. Tujuan dari metode RSM adalah penentuan level dan nilai dari faktor yang optimal tersebut.

Nah, demikianlah pembahasan singkat mengenai Design of Experiments. Silakan Anda mempraktikkan pengujian DoE menggunakan Design Expert untuk lebih memahami teknik perancangan dan perencanaan yang satu ini.

Baca juga:

Pengujian Analisis Variasi (ANOVA) Menggunakan Aplikasi Design Expert

Kategori
Jasa Skripsi Tesis Disertasi Konsultasi Susun Skripsi

Aplikasi dan Perbandingan Algoritma Backprogration Neural Network di MATLAB

Otak manusia dipercaya merupakan organ paling kompleks yang dikenal di alam semesta. Komponen fundamental otak adalah neuron, ada sekitar 100 miliar neuron yang dihubungkan dengan sekitar 100 triliun keterkaitan.terinspirasi dari prinsip komputasi yang dilakukan oleh jaringan saraf biologis otak, sistem komputasi yang disebut dengan jaringan syaraf tiruan dikembangkan.

Backprogration atau Propagasi Balik adalah salah satu dari jaringan saraf tiruan atau neural network yang merupakan bagian dari metode pelatihan yang diawasi oleh Supervised Learning dengan jaringan multi layer dan memiliki ciri khusus meminimalkan error pada output yang dihasilkan oleh jaringan.

Biasanya pada proses klasifikasi Backprogration Neural Network akan dilakukan dengan dua tahap perhitungan, yaitu:

  1. Perhitungan maju yang akan menghitung nilai kesalahan atau error antara nilai output system dengan nilai yang seharusnya
  2. Perhitungan mundur untuk memperbaiki bobot berdasarkan nilai error tersebut.

Jaringan saraf tiruan merupakan salah satu sistem pemrosesan informasi yang didesain dengan menirukan cara kerja otak manusia dalam menyelesaikan suatu masalah dengan melakukan proses belajar melalui perubahan bobot sinapsisnya. Jaringan saraf tiruan mampu mengenali kegiatan berbasiskan data masa lalu. Masa lalu akan dipelajari oleh jaringan saraf tiruan sehingga memiliki kemampuan untuk memberikan keputusan pada data yang belum pernah dipelajari.

Jaringan saraf tiruan didasarkan pada beberapa asumsi :

  1. Pengolahan informasi terjadi pada neuron
  2. Sinyal-sinyal dilewatkan diantara neuron melalui rantai penghubung
  3. Masing-masing rantai penghubung akan mengalihkan sinyal yang ditransmisikan
  4. Masing-masing neuron menggukan fungsi aktivasi pada jaringan masukkannya untuk menentukakn sinyal keluaran.

Aplikasi dan Perbandingan Algoritma Backprogration Neural Network di MATLAB

Jaringan Backprogration Neural Network adalah jaringan saraf yang paling banyak diterapkan. Ada sejumlah algoritma saat ini. Kekuatan dan kelemahan masing-masing dari 8 jenis algoritma Backprogration Neural Network yang disediakan oleh toolbox jaringan saraf di MATLAB dipelajari untuk memilih algoritma yang lebih tepat dan lebih cepat dalam kondisi yang berbeda. Berdasarkan hal tersebut, pengukuran tingkat vakum dengan metode magnetron-discharge diambil sebagai contoh untuk melakukan simulasi, langkah-langkah konvergensi dari berbagai algoritma Backprogration Neural Network dibandingkan dalam situasi yang berbeda, properti konvergensi cepat dari trainlm dikonfirmasi , diperoleh kesimpulan bahwa algoritma Backprogration Neural Network dapat meramalkan tingkat kevakuman.

Kategori
Jasa Buat Peta Jasa Olah Data Jasa Pemetaan Geografi Konsultasi Susun Skripsi Peta Digital Arcgis Arcview

Metode Geographically Weigthed Lasso Regression

Metode Geographically Weighted Regression (GWR) merupakan pengembangan dari regresi global. Berperan dalam mengakomodasi permasalahan tersebut. Metode ini diperkenalkan pada tahun 1996 dalam literatur geografis yang diambil dari pendekatan statistik. Metode ini bekerja berdasarkan ide sederhana tapi kuat untuk memprediksi model lokal menggunakan himpunan bagian dari pengamatan yang berpusat pada titik fokus.

Hanya saja metode ini juga memiliki kelemahan misalnya ketika terjadi multikolinearitas maka analisis yang dilakukan dengan GWR menjadi kurang optimal.

Geographically Weighted Lasso Regression (GWLR) merupakan teknik yang memakai pendekatan Lasso dalam model GWR untuk memecahkan masalah multikolinearitas. Metode geographically weighted Lasso juga dapat digunakan untuk menyeleksi variabel yang tidak signifikan dengan cara mengurangi nilai koefisien regresi sampai nol. Hal ini menyebabkan variabel-variabel dengan konvensi regresi nol tidak berpengaruh secara menyeluruh. Berikut rumus lengkapnya:

Dalam penelitian Utami 2016 tentang pengangguran di daerah Jawa Tengah dengan menggunakan metode gwr ini diperoleh variabel penjelas IPM, UMK, Rasio Ketergantungan, dan TPAK semua aspek ini memiliki pengaruh yang berlainan untuk setiap wilayah.

Penelitian dengan menggunakan metode geographically weighted regression ini menunjukkan bahwa hubungan lokal di antara variabel penjelas dapat menyebabkan estimasi koefisien dengan model GWR multikolinieritas.

Oleh sebab itu hasil mengakibatkan estimasi parameter dengan standar non valid yang besar. Tentu saja hal ini memicu permasalahan pada hubungan antar variabel. Dengan menggunakan konsep Lasso tentu akan dengan mudah melakukan seleksi variabel dengan mengurangi estimasi koefisien regresi sampai ke 0 pada beberapa penelotian. Diharapkan dengan metode ini estimasi parameter diperoleh lebih stabil dan dan and valid estimasi variabel respon yang diperoleh lebih kecil sehingga hasil estimasi benar.

Pengaplikasian Metode GWRL

GWR cocok diterapkan pada kumpulan data dengan banyak fitur. Jadi metode ini tidak cocok untuk diterapkan pada Kumpulan data kecil dan tidak bekerja pada data multipoint. Metode ini dapat digunakan untuk beberapa kebutuhan penelitian berikut:

Korelasi Pencapaian

Anda bisa menggunakan metode ini untuk mengetahui hubungan antara pencapaian pendidikan dan pendapatan konsisten pada seluruh wilayah studi.

Analisis Kejadian Penyakit

Setiap penyakit pasti mempunyai sebab maka metode ini dapat diterapkan untuk mengetahui pemicu dari penyakit atau kejadian penyakit dengan kedekatan fitur air.

Analisis Penyebab Kebakaran Hutan

Bagi penegak hukum metode ini bermanfaat untuk mengetahui variabel kunci yang menjelaskan frekuensi kebakaran hutan yang meningkat.

Analisis Habitat yang Terancam Punah

Kegunaan menariknya lagi metode ini dapat digunakan untuk menganalisis habitat atau wilayah mana yang memiliki spesies yang terancam punah.

Analisis Faktor Kanker di Seluruh Wilayah yang Diteliti

Metode GWRL ini gunakan untuk menganalisis faktor-faktor yang mempengaruhi tingkat kanker yang lebih tinggi konsistennya di seluruh wilayah yang diteliti.

Itulah pembaca sekilas tentang metode Geographically Weighted Regression Lasso sekaligus kegunaannya untuk kebutuhan penelitian kita.

Kategori
Jasa Olah Data Jasa Skripsi Tesis Disertasi Konsultasi Susun Skripsi

Ant Colony Algorithm pada Aplikasi R-Studio

Masalah merupakan suatu hal yang akan sering muncul didalam kehidupan entah pada diri kita sendiri ataupun pada hal yang lebih besar seperti organisasi. Untuk menyelesaikan masalah tersebut bisa dilakukan beberapa hal semisal melalui logika pada pikiran kita atau mengikuti arus penyelesaian masalah pada suatu teori. Banyak teori-teori yang diciptakan dengan berujung pembuatan suatu algoritma untuk memecahkan masalah seperti ant colony algorithm.

Apa itu Ant Colony Algorithm?

Biasa disebut dengan ACO (ant colony optimization), salah satu jenis dari algoritma diciptakan untuk mencari suatu jalur melalui titik-titik paling rendah dari suatu jarak yang paling rendah untuk menyelesaikan suatu permasalahan. Seperti dengan halnya semut yang akan menyelesaikan masalah mereka ketika menuju ke jalur makanan yang ingin mereka tuju dengan mencari jarak paling dekat agar mereka bisa cepat sampai ke tujuan makanan mereka.

Algoritma ant colony optimization inipun dikenal sebagai teknik dari sebuah probabilitas atau sebuah peluang untuk menyelesaikan masalah komputasi atau cara untuk menemukan suatu titik penyelesaian dari suatu masalah dengan input data menggunakan suatu algoritma melalui grafik.

Untuk menggunakan algoritma jenis inipun tidak bisa asal ketik atau langsung menggunakan code dari ant colony optimization. Diperlukan beberapa jenis software pemrograman yang software tersebut memiliki fungsi yang bisa mengoperasikan suatu algoritma atau yang biasa kita kenal sebagai coding. Untuk software tersebut anda bisa mempraktekannya dengan menggunakan R studio software.

Mengenal Apa Itu R Studio?

R studio merupakan software IDE ( Integrated Development Environment ) atau lingkungan pengembangan integritas yang digunakan untuk suatu pemrograman R. Pemrograman tersebut merupakan bahasa dari pemrograman software untuk suatu analisis dari grafik dan statistik sehingga cocok digunakan untuk menggunakan algoritma pemrograman dari ant colony algorithm. Jadi kesimpulannya R studio merupakan software atau perangkat lunak yang digunakan oleh para programmer untuk mengembangkan suatu kode dari perangkat lunak menggunakan analisis grafik ataupun statistik.

Mengapa Menggunakan Software R Studio Untuk Pemrograman ACO?

Aplikasi software dari R studio ini sangat cocok digunakan untuk membuat pemrograman dari algoritma ant colony optimization dalam mengembangkan dari pembuatan suatu jarak tempuh terdekat untuk menyelesaikan suatu masalah. Mengingat bahwa ACO merupakan suatu algoritma yang untuk proses pembuatannya dengan menginput data melalui grafik. R studio sangatlah pas untuk digunakan dalam tipe ant colony optimization ini karena dalam analisisnya menggunakan statistik dan grafik.

Mengapa Menggunakan ACO untuk Memecahkan Suatu Masalah?

Jenis algoritma ini telah dikenal dalam penggunaannya untuk menyelesaikan suatu permasalahan dalam suatu organisasi. Seperti dalam sebuah perusahaan, ant colony algorithm atau ACO digunakan sebagai penyelesaian masalah dalam suatu penjadwalan proyek yang hanya memiliki sumber daya yang terbatas, penjadwalan dari pekerjaan, ataupun masalah-masalah lainnya lagi.

Kategori
Jasa Olah Data Jasa Skripsi Tesis Disertasi Konsultasi Susun Skripsi

Mengenal Lebih Jauh Perangkat Lunak Simulasi Flexsim

Flexsim merupakan sebuah perangkat lunak simulasi peristiwa diskrit. Software ini sendiri termasuk buatan Flexsim Software Products, Inc. Untuk kebanyakan produk Flexsim sendiri mencakup lingkungan pemodelan sistem perawatan kesehatan.

Sejarah Pengembangan Simulasi Software Flexsim

Perlu Anda ketahui, bahwa Flexsim mulai berkembang pada tahun 2001 akhir. Tepatnya sebagai proyek pengembangan yang tidak disebutkan dari perusahaan F&H Simulations, Inc, Taylor ED F&H Holland, dan distributor AS produk Taylor II. Proses pengembangan awal bersama Dr. Eamonn Lavery.

Sedangkan untuk proses pengembangan utamanya bersama Anthony Johnson di bulan April 2002. Pada akhir tahun tersebut, proyek pengembangan berganti namanya menjadi Flexsim. Tepat saat F&H Simulation mengubah nama mereka jadi Flexsim Software Product, Inc.

Hingga secara resmi Flexsim 1.0 berhasil rilis tepatnya pada bulan Februari tahun 2003. Software ini sendiri memanfaatkan skema versi perangkat lunak major.minor.build, serta sampai versi 7.7.4. Hingga pada tahun 2016 lalu sudah berubah menjadi skema versi year.update.bugfix.

Penggunaan Software Flexsim di Berbagai Bidang

Tahukah Anda, bahwa Flexsim hingga saat ini sudah banyak membantu berbagai proyek simulasi. Terutama yang melibatkan sistem manufaktur standar dan fleksibel. Oleh sebab itu, ketahui berbagai penggunaan selengkapnya pada penjelasan di bawah ini:

  1. Robotika dan Derek

Pada pustaka objek standar Flexsim terdiri dari berisi objek robot 6-sumbu. Adapun isinya adalah logika gerak dan kemampuan dalam membuat jalur gerak. Software ini sendiri juga berguna untuk memodelkan sekaligus melakukan analisis sel robot di sekitar lingkungan manufaktur.

Hal ini juga termasuk dalam penjadwalan dinamis serta kontrol sel perakitan agar menjadi sebuah robot. Flexsim lewat penggunaan objek derek tersebut juga berguna untuk melakukan evaluasi solusi penjadwalan derek pada lingkungan produksi kapal.

  • Industri 4.0

Software Flexsim bermanfaat untuk mengotomatisasi pengembangan model simulations selama satu dekade lebih. Adapun tren Industri 4.0 yang sedang berlangsung sekarang ini mendorong setiap produsen menuju arah komunikasi dan otomatisasi lebih baik.

Flexsim juga dapat berguna untuk mengembangkan komputer. Perangkat lunak tersebut juga dapat diintegrasikan ke dalam sistem dengan melibatkan komunikasi data secara nyata atau real-time. Tidak heran jika sangat tepat jika berguna bagi perencanaan produksi.

Itu tadi penjelasan lengkap tentang software simulasi Flexsim yang bisa Anda ketahui. Tentu saja masih ada banyak penggunaan perangkat lunak tersebut. Tidak heran jika penggunaannya semakin bermanfaat untuk berbagai bidang di kehidupan manusia.

Kategori
Jasa Buat Peta Jasa Olah Data Jasa Skripsi Tesis Disertasi Konsultasi Susun Skripsi

Analisis Kernel Triangle di Software Matlab

Analisis kernel triangle dapat Anda terapkan pada software Matlab sesuai dengan kebutuhan. Software atau perangkat lunak ini sendiri sudah banyak penggunanya. Tidak heran jika ada banyak jenis analisis dapat pengguna terapkan pada software tersebut.

Mengenal Software Matlab

Matlab merupakan salah satu platform yang sudah rilis sejak tahun 1970 lalu oleh MathWorks. Platform ini sendiri sudah banyak penggunanya dengan fungsi untuk melakukan pengolahan angka sekaligus bahasa pemrograman. Tidak heran jika ada banyak hal bisa Anda lakukan pada software tersebut.

Terutama yang berkaitan langsung dengan bidang ilmu sains, matematika, hingga teknik. Bahasa pemrogramannya sendiri berbasis matriks sehingga pengguna dapat memakainya untuk melakukan analisis data, menciptakan aplikasi dan pemodelan, hingga membuat algoritma.

Perangkat lunak tersebut juga sering bermanfaat untuk mengembangkan machine learning, deep learning, dan hal terkait lainnya. Dengan begitu, siapa saja dapat memakai software tersebut baik itu pelajar hingga orang profesional sekalipun.

Pengertian Analisis Kernel Triangle

Perlu Anda ketahui, bahwa istilah kernel dapat berguna pada proses analisis statistik. Kernel sendiri sebenarnya mempunyai beberapa arti berbeda pada berbagai cabang statistik. Tidak heran jika sangat penting untuk mempelajarinya dahulu lebih lanjut.

Metode kernel ini sendiri umumnya sangat cocok untuk memungkinkan pengguna beroperasi pada ruang fitur implisit dimensi tinggi sehingga tidak menghitung koordinat data dalam sebuah ruangan. Akan tetapi memakai hitungan produk antar gambar pada semua pasangan data.

Proses analisis ini sendiri dapat mengoperasikan algoritma seperti pengelompokan spektral, analisis korelasi kanonik, proses Gaussian, regresi ridge, analisis komponen utama (PCA), filter adaptif linear dan masih banyak lagi lainnya.

Beberapa Fungsi Kernel

Pada statistik nonparametrik, kernel tersebut dapat berguna dalam fungsi pembobotan untuk teknik estimasi nonparametrik. Keberadaannya sendiri sangat bermanfaat dalam estimasi kepadatan kernel. Tujuannya tidak lain untuk memperkirakan fungsi kepadatan variabel secara acak.

Tidak hanya itu, pada regresi kernel juga dapat berguna untuk memperkirakan ekspektasi bersyarat dalam sebuah variabel acak. Keberadaan kernel juga dapat berguna dalam deret waktu hingga penggunaan periodogram sehingga dapat menentukan kerapatan spektral.

Selain itu, umumnya lebar kernel juga perlu ditentukan ketika menjalankan estimasi non parametrik. Kernel sendiri termasuk sebagai fungsi integral nyata non-negatif nilainya. Tentu sebelum menggunakannya masih perlu mempelajari lebih jauh karena fungsinya cukup luas.

Itu tadi penjelasan lengkap mengenai analisis kernel triangle pada software Matlab. Hingga saat ini tentu ada banyak orang menggunakan berbagai metode analisis pada perangkat lunak tersebut. Dengan begitu, tidak hanya terbatas pada kernel saja.