Kategori
Jasa Olah Data

Kenali Analisis Model GW-PCA (R) Pada Statistik Spasial

Model GW-PCA (R) atau geographically weighted bermanfaat saat ada non-stationaritas di semua daerah spasial. Pada poin ini, model global sendiri tidak bisa di pakai untuk mewakili variasi lokal di semua area.

Sebagai penggantinya, koefisien regresi tertimbang secara lokal dan berdasarkan jarak tertentu, sehingga bisa di pakai untuk menyesuaikan nilai global. Jadi Anda bisa menggunakan data spasial yang memuat informasi lokasi.

Adapun paket R dari GW model ini dan menangani prosedur tersebut. Selain itu modal itu juga mempunyai banyak kegunaan untuk melakukan analisis data spasial dan memberikan detail lebih jelas.

Mengenal GW-PCA (R) Data Spasial

Berbicara mengenai kegunaannya, salah satunya yakni untuk analisis komponen utama sebagai alat eksploitasi untuk evaluasi heterogenitas data spasial. Paket R tersebut juga memberikan banyak ringkasan statistik lengkap.

Mengenai fungsi spacial weighting sendiri ini merupakan bagian paling penting dari model GW dalam analisis statistik data spasial. Karena hal ini dapat di pakai dalam mendeskripsikan hubungan spasial di antara data target.

Anda bisa mendefinisikan sebuah matrik dengan dimensi yang sama menggunakan data target. Hal itu di lakukan agar bida melakukan indikasi terhadap geographical weighting dari tiap titik data untuk setuap lokasi.

Nantinya para pengguna harus dapat menentukan jenis dari jarak, fungsi kernel, serta bandwidth yang di pakai untuk membangun matriknya. Jadi metode GW-PCA (R) ini dapat di pertimbangkan untuk digunakan.

Dengan data tersebut bisa di pilih untuk metode analisis ketika menghitung jarak (eucliden, manhattan, serta jarak great circle maupun jarak minkowski di generalisasikan). Biasanya fungsi kernel yang di pakai ialah (gaussian, eksponensial, box-car, bi-square, dan tri-cube).

Untuk gaussian dan eksponensial ialah fungsi kelanjutan dari jarak antara dua titik observasi. Sementara itu box-car, bi-square, serta tri-cube merupakan fungsi diskontinyu.

Artinya pengamatan lebih jauh dari jarak yang sebelumnya sudah di tentukan (bandwith) tidak di ikutsertakan. Bandwidth sendiri bisa berupa jarak atau jumlah data lokal yang tetap untuk kedua fungsinya itu.

Namun ukuran local sample yang sesungguhnya sama seperti ukuran sampel dengan fungsi kontinyu. Anda bisa lihat bagaimana hubungan lokal potensial antar variabel dengan menerapkan fungsi statistik GW-PCA (R).

Baca juga:

Pengertian Self Organizing Maps dan Fakta Unik yang Ada

Kategori
Jasa Olah Data

Pengertian Self Organizing Maps dan Fakta Unik yang Ada

Pertanyaan terkait apa itu Self Organizing Maps (SOM) seringkali muncul di kolom pencarian internet. SOM merupakan salah satu jenis ANN atau artificial neural network yang menggunakan metode tanpa arahan (unsupervised learning) dari data input target.

Apa Itu Self Organizing Maps?

Self Organizing Maps (SOM) adalah jenis ANN yang dapat Anda gunakan tanpa memerlukan adanya arahan. Penggunaan SOM akan menghasilkan representasi yang terpisah antara pelatihan dengan dimensi rendah dan ruang input sampel.

Perbedaan mendasar dari SOM dengan jenis ANN lainnya terletak pada metode pembelajaran kompetitif, bukan dengan metode pembelajaran koreksi kesalahan. Bahkan jaringan ini juga menggunakan fungsi Neighbor untuk melestarikan sifat topologi dalam ruang inputnya.

Kelebihan dari SOM yaitu mampu menghasilkan data yang mudah untuk Anda tafsirkan dan pahami. Hal tersebut terjadi karena SOM menerapkan sistem pengurangan dimensi serta melakukan pengelompokan grid.

Fakta Unik dari Self Organizing Maps

Ada beberapa fakta unik yang perlu Anda ketahui dari SOM. Fakta unik yang cukup penting untuk Anda ketahui yaitu terkait cara kerja SOM dan juga cara pengaplikasiannya.

1. Cara Kerja

Fakta unik pertama dari SOM yaitu terkait cara kerja yang ada. Secara garis besar, SOM memiliki dua lapisan penting yaitu output dan input map feature. Tahap pertama cara kerja SOM yaitu inisialisasi bobot pada vektor. Sehingga beberapa vektor terpilih akan menjadi sampel secara acak.

Selanjutnya vektor yang terpilih akan kembali dipetakan untuk mengetahui bobot yang paling mewakili bagian input. Setiap vektor berbobot akan memiliki bobot tetangga yang berada di lingkungan sekitarnya. Bentuk yang paling banyak map bentuk yaitu bentuk heksagonal dan persegi. Cara kerja ini biasanya akan dilakukan berulang bahkan hingga 1.000 kali.

2. Pengaplikasian Self Organizing Maps

Fakta lainnya yang perlu Anda ketahui yaitu pengaplikasian SOM dalam membentuk data baru akan mempertahankan informasi struktural yang berasal dari data pelatihan. Sehingga Anda tidak perlu khawatir akan kehilangan data saat data melewati proses reduksi.

Tidak hanya itu, SOM juga dapat Anda gunakan untuk mendefinisikan pemetaan antara sifat fisik dan klaster. Sehingga proses analisis dan lanjutan bisa berjalan dengan lancar tanpa adanya tahapan penting yang terlewat.

Bagaimana, menarik bukan beberapa informasi tentang apa itu SOM? Demikian ulasan singkat mengenai pengertian SOM dan fakta unik yang ada, semoga bermanfaat.

Baca juga:

Tujuan Menggunakan Multivariat SSA

Kategori
Jasa Olah Data

Tujuan Menggunakan Multivariat SSA

Multivariat SSA – Dalam ilmu pengetahuan banyak sekali metode baru yang bermunculan. Hal ini bertujuan untuk meningkatkan kemudahan dalam berbagai bidang. Metode multivariat, tentu sudah tidak asing di telinga. Sebab metode ini seringkali berguna dalam beberapa bidang terutama bidang kesehatan.

Apa itu Multivariat SSA?

Multivariat Singular Spectrum Analysis atau SSA merupakan sebuah metode dalam statistik. Untuk menghitung data ini, memerlukan beberapa alat. Sebab multivariat memiliki beberapa variabel, sehingga penghitungannya harus  hati-hati. Metode ini juga sering  berguna  untuk memprediksi musim.

Selain berguna untuk memprediksi musim, metode ini juga berguna untuk mengolah data yang memiliki beberapa variabel. Bagi Anda yang akan menggunakan metode ini untuk menentukan sesuatu, harus mengetahui rumus dari metode ini. Sebab metode ini dapat Anda kerjakan menggunakan beberapa rumus.

Tujuan Menggunakan Multivariat SSA

Bagi masyarakat yang belum mengetahui tujuan dari metode ini, bisa mencari referensi dari berbagai sumber. Sebab metode ini memiliki beberapa manfaat dalam bidang bisnis. Sehingga penting bagi Anda mengetahui rumus multivariat. Berikut beberapa tujuan menggunakan metode multivariat, yakni:

1. Mengetahui Interaksi Halaman Web

Dalam digital marketing, metode multivariat memiliki fungsi untuk meningkatkan jumlah pengunjung yang mengunjungi web. Sebab semakin ramai suatu web, maka semakin naik traficc dari website tersebut. Oleh karena itu, banyak orang yang berusaha untuk menguasai multivariat.

2. Memperkirakan Peluang Bisnis

Dalam dunia bisnis, pelaku usaha harus pandai mencari peluang. Terlebih persaingan dalam dunia bisnis semakin ketat. Untuk memperoleh peluang bisnis yang cukup besar, Anda bisa menggunakan analisis multivariat. Sebab metode ini cukup efektif dalam mengetahui peluang bisnis.

3. Membantu Menerapkan Strategi Investasi

Saat ini banyak perusahaan yang memutuskan untuk melakukan investasi. Sebab investasi menguntungkan perusahaan. Namun untuk mendapat keuntungan, perusahaan harus menerapkan strategi yang bagus. Sehingga, pelaku usaha harus menggunakan analisis multivariat.

Berbagai tujuan di atas, sering menjadi alasan banyak orang menggunakan analisis multivariat SSA. Sebab analis ini cukup menguntungkan berbagai belah pihak. Namun untuk menerapkan analisis ini, pelaku harus mengetahui beberapa rumus metode multivariat. 

Baca juga:

Peran Logistic Smooth Transition Autoregressive dalam Kehidupan Sehari-hari

Kategori
Jasa Olah Data

Peran Logistic Smooth Transition Autoregressive dalam Kehidupan Sehari-hari

Manusia pasti membutuhkan perencanaan yang baik untuk menentukan langkah di masa depan. Untuk membuat perencanaan yang baik Anda bisa memanfaatkan keberadaan data logistic smooth transition autoregressive.

Apa itu Logistic Smooth Transition Autoregressive?

Logistic Smooth transition autoregressive (LSTAR)  adalah salah satu model data yang kerap orang gunakan untuk menciptakan perencanaan baik di masa mendatang. Keberadaan LSTAR berpedoman pada pengguna deret waktu linier sehingga menghasilkan pertimbangan yang cukup matang.

LSTAR merupakan bentuk ramalan data untuk menghasilkan perencanaan berserta hasil fleksibel.  Hampir semua pengusaha bisa memanfaatkan keberadaan LSTAR untuk mendapatkan perhitungan matang pada hasil produksi.

Cara kerja dari model data tersebut yaitu memperhitungkan semua linier yang ada untuk mendapatkan hasil perencanaan terbaik. Jika hasil tersebut sesuai dengan model data maka nantinya akan menghasilkan perencanaan yang baik.

Manfaat dari Logistic Smooth Transition Autoregressive

Penerapan model data LSTAR ternyata memiliki beragam manfaat bagi kehidupan sehari-hari khususnya bagi seluruh pengusaha. Berikut beberapa manfaat dan peran penting dari LSTAR yang wajib untuk Anda ketahui:

1. Menciptakan Perencanaan Yang Baik

Manfaat utama yang bisa Anda rasakan jika menerapkan keberadaan model data berupa LSTAR yaitu memudahkan perencanaan. Dengan menggunakan LSTAR seorang pengusaha bisa mengetahui besar keuntungan dalam satuan waktu tertentu.

Melalui perhitungan LSTAR, nantinya seluruh biaya yang pengusaha keluarkan sebagai modal terlihat jelas. Menariknya, menggunakan model data ini juga mampu memperkirakan potensi keberhasilan sebuah usaha atas modal yang Anda keluarkan.

2. Terhindar dari Kerugian

Keberadaan LSTAR ternyata juga bisa Anda gunakan sebagai alternatif untuk menghindari kerugian. Hal ini bisa Anda dapatkan dari hasil pertimbangan yang telah terlewati dengan memanfaatkan deret waktu.

Manfaat ini sangat pengusahaan perlukan sehingga perusahaan atau jalannya usaha tetap stabil. Tanpa adanya LSTAR, suatu pengusaha tidak akan bisa merencanakan nasib perusahaan dengan baik dan benar.

LSTAR menjadi salah satu data yang bisa Anda manfaatkan untuk menciptakan perencanaan di masa mendatang. LSTAR juga kerap orang sebut sebagai data peramal berdasarkan data deret waktu.

Baca juga:

Pengujian Analisis Variasi (ANOVA) Menggunakan Aplikasi Design Expert

Kategori
Jasa Olah Data Jasa Skripsi Tesis Disertasi Konsultasi Susun Skripsi

Ant Colony Algorithm pada Aplikasi R-Studio

Masalah merupakan suatu hal yang akan sering muncul didalam kehidupan entah pada diri kita sendiri ataupun pada hal yang lebih besar seperti organisasi. Untuk menyelesaikan masalah tersebut bisa dilakukan beberapa hal semisal melalui logika pada pikiran kita atau mengikuti arus penyelesaian masalah pada suatu teori. Banyak teori-teori yang diciptakan dengan berujung pembuatan suatu algoritma untuk memecahkan masalah seperti ant colony algorithm.

Apa itu Ant Colony Algorithm?

Biasa disebut dengan ACO (ant colony optimization), salah satu jenis dari algoritma diciptakan untuk mencari suatu jalur melalui titik-titik paling rendah dari suatu jarak yang paling rendah untuk menyelesaikan suatu permasalahan. Seperti dengan halnya semut yang akan menyelesaikan masalah mereka ketika menuju ke jalur makanan yang ingin mereka tuju dengan mencari jarak paling dekat agar mereka bisa cepat sampai ke tujuan makanan mereka.

Algoritma ant colony optimization inipun dikenal sebagai teknik dari sebuah probabilitas atau sebuah peluang untuk menyelesaikan masalah komputasi atau cara untuk menemukan suatu titik penyelesaian dari suatu masalah dengan input data menggunakan suatu algoritma melalui grafik.

Untuk menggunakan algoritma jenis inipun tidak bisa asal ketik atau langsung menggunakan code dari ant colony optimization. Diperlukan beberapa jenis software pemrograman yang software tersebut memiliki fungsi yang bisa mengoperasikan suatu algoritma atau yang biasa kita kenal sebagai coding. Untuk software tersebut anda bisa mempraktekannya dengan menggunakan R studio software.

Mengenal Apa Itu R Studio?

R studio merupakan software IDE ( Integrated Development Environment ) atau lingkungan pengembangan integritas yang digunakan untuk suatu pemrograman R. Pemrograman tersebut merupakan bahasa dari pemrograman software untuk suatu analisis dari grafik dan statistik sehingga cocok digunakan untuk menggunakan algoritma pemrograman dari ant colony algorithm. Jadi kesimpulannya R studio merupakan software atau perangkat lunak yang digunakan oleh para programmer untuk mengembangkan suatu kode dari perangkat lunak menggunakan analisis grafik ataupun statistik.

Mengapa Menggunakan Software R Studio Untuk Pemrograman ACO?

Aplikasi software dari R studio ini sangat cocok digunakan untuk membuat pemrograman dari algoritma ant colony optimization dalam mengembangkan dari pembuatan suatu jarak tempuh terdekat untuk menyelesaikan suatu masalah. Mengingat bahwa ACO merupakan suatu algoritma yang untuk proses pembuatannya dengan menginput data melalui grafik. R studio sangatlah pas untuk digunakan dalam tipe ant colony optimization ini karena dalam analisisnya menggunakan statistik dan grafik.

Mengapa Menggunakan ACO untuk Memecahkan Suatu Masalah?

Jenis algoritma ini telah dikenal dalam penggunaannya untuk menyelesaikan suatu permasalahan dalam suatu organisasi. Seperti dalam sebuah perusahaan, ant colony algorithm atau ACO digunakan sebagai penyelesaian masalah dalam suatu penjadwalan proyek yang hanya memiliki sumber daya yang terbatas, penjadwalan dari pekerjaan, ataupun masalah-masalah lainnya lagi.

Kategori
Jasa Olah Data Jasa Skripsi Tesis Disertasi Konsultasi Susun Skripsi

Analisis Candle pada Software Matlab dan R

Banyak orang yang masih belum mengetahui tentang apa itu analisis candle. Analisis ini sendiri dapat Anda terapkan pada software Matlab maupun R. Terlebih kedua perangkat lunak tersebut sekarang ini memiliki jumlah pengguna sangat banyak karena memang keberadaannya sudah cukup populer.

Mengenal Software Matlab dan R

Perlu Anda ketahui, bahwa software Matlab dan R termasuk salah satu perangkat lunak paling populer penggunaannya. Tidak heran jika ada banyak orang sudah memanfaatkannya untuk melakukan berbagai aktivitas analisis data sesuai kebutuhan.

Untuk Matlab sendiri termasuk sebagai perangkat lunak pemrograman yang dirancang secara khusus bagi para ilmuwan maupun insinyur. Kegunaannya adalah untuk melakukan analisis sekaligus merancang sistem maupun produk dengan bahasa berbasis matriks.

Berbeda dengan R yang termasuk perangkat lunak sekaligus bahasa pemrograman yang dapat Anda manfaatkan untuk menganalisis grafik dan statistika. Software R ini sendiri merupakan buatan dari Ross Ihaka dan Robert Gentleman asal Universitas Auckland di Selandia Baru.

Apa itu Analisis Candle?

Termasuk sebagai analisis teknikal dalam bentuk grafik harga. Umumnya, analisis tersebut berguna untuk menganalisis dengan tampilan harga terendah, tertinggi, penutupan, maupun pembukaan dalam periode tertentu. Saat ini sendiri salah satu yang paling banyak digunakan adalah candlestick.

Yakni sebuah grafik harga saham yang dahulunya berguna bagi para trader untuk mencatat harga pasar dari waktu ke waktu. Nantinya pengguna akan memakai data tersebut dengan tujuan untuk memprediksi pergerakan harga di waktu mendatang.

Metode ini sendiri berkembang berkat Munehisa Honma. Kemudian populer kembali berkat Steven Nison di dunia barat. Candlestick sendiri mempunyai dua komponen utamanya diantaranya adalah tubuh candle atau body serta ekor candel atau shadow/wick.

Penggunaan Analysis Candlestick

Candlestick mempunyai dua warna yang ada pada komponen utamanya. Adapun warna tersebut adalah merah dan hijau. Pada warna merah berarti terdapat penurunan harga saham sehingga harga penutupannya jauh lebih rendah daripada harga pembukaan atau bearish.

Berbeda dengan warna hijau karena artinya terdapat peningkatan harga saham. Hal ini berarti harga penutupan jauh lebih tinggi daripada harga pembukaan atau bullish. Tentu saja akan sangat mudah dalam memahami komponen warna tersebut.

Akan tetapi, dalam beberapa kasus candlestick tersebut tidak memiliki tampilan berwarna, maka warna hitam akan memberi indikasi situasi bearish. Sedangkan warna putih akan mengindikasikan situasi bullish dalam sebuah grafik.

Itu tadi penjelasan lengkap tentang analisis candle yang dapat Anda gunakan pada software. Analisis ini sendiri sebenarnya dapat bermanfaat juga selain untuk mengetahui harga saham di pasar saham saja. Pasalnya, pengguna dapat memakainya sesuai kebutuhan dengan sistem sama.

Kategori
Jasa Buat Peta Jasa Olah Data Jasa Skripsi Tesis Disertasi Konsultasi Susun Skripsi

Penjelasan Metode K-Harmonic Mean pada Software R Studio

K-harmonic mean dapat Anda gunakan apabila ingin melakukan sebuah penelitian. Penelitian ini sendiri dapat memanfaatkan juga beberapa perangkat lunak cukup populer di berbagai belahan dunia. Tidak lain yakni software R Studio.

Kenali Dahulu Apa itu R Studio

R Studio adalah salah satu jenis perangkat lunak yang dapat Anda manfaatkan untuk mempermudah menulis sekaligus menggunakan bahasa R. Hal ini berarti software tersebut termasuk integrated development environment atau IDE untuk R.

Hal tersebut mencakup editor penyorotan sintaks, konsol, alat untuk merencanakan, debugging, riwayat, dan masih banyak lagi lainnya. Hingga sekarang ini sendiri pengguna software tersebut terbilang cukup banyak. Hal ini juga karena kepopulerannya di masyarakat.

Hingga saat ini sendiri RStudio tersedia dalam edisi open source serta komersial. Anda juga dapat menjalankannya pada beragam sistem operasi. Baik itu Linux, Mac, Windows, ataupun browser yang sudah terhubung langsung kepada RStudio Server.

Pengertian K-Harmonic Mean

Perlu Anda ketahui, bahwa K-Harmonic Mean sebenarnya termasuk sebagai metode pengembangan dari K-Means. Adapun fungsi dan kegunaannya adalah untuk mengatasi berbagai masalah K-Means saat ingin menentukan titik pusat cluster.

Tidak hanya itu, penggunaannya juga dapat meminimalisasi rata-rata harmonik pada semua titik data ke pusat cluster yang tersedia. Hasil pemetaan nantinya dapat tersimpulkan jika menggunakan metode tersebut dengan tepat dan teliti.

KHM ini sendiri termasuk salah satu metode pengelompokan baru yang dapat Anda gunakan untuk mengelompokkan data sedemikian rupa. Agar nantinya jumlah harmonik dari jarak setiap entitas sekaligus seluruh pusat dapat terminimalkan.

Penggunaan K-H Means

Seperti pada penjelasan di atas, K-means termasuk salah satu metode yang dapat Anda gunakan dalam sebuah penelitian. Dengan begitu, tentu akan semakin mudah dalam menemukan solusi dari sebuah data maupun cluster.

Jumlah cluster yang sudah ditentukan sebelumnya serta tekniknya sendiri umumnya akan sangat bergantung pada identifikasi awal elemen sehingga perlu mewakili cluster dengan baik. Penelitian dengan cara ini juga memerlukan area penelitian luas.

Adapun penggunaannya lebih fokus pada peningkatan proses pengelompokan sehingga dapat memecahkan masalah. Hingga saat ini sendiri ada banyak peneliti yang tertarik untuk mempelajari lebih lanjut mengenai K-H means tersebut.

Itu tadi penjelasan lengkap yang dapat Anda ketahui mengenai K-harmonic mean pada software R Studio. Sebelum menerapkan metode ini, maka sangat penting bagi pengguna untuk mempelajari metode pengelompokannya terlebih dahulu.

Kategori
Jasa Olah Data Jasa Skripsi Tesis Disertasi

Pengolahan Menggunakan R-Studio Statistik

Statistika deskriptif merupakan sebuah metode pemberian informasi dalam bentuk yang lebih ringkas, rapi dan mudah dimengerti. Metode ini biasanya memberikan informasi dalam bentuk tabel, diagram dan grafik agar lebih mudah dan cepat dipahami oleh sang pembaca. Agar sebuah data dapat menampilkan data dalam bentuk statistika deskriptif, maka dibutuhkan pengolahan data melalui sebuah program seperti R-Studio Statistik.

Tentang R-Studio

Salah satu program yang saat ini banyak digunakan oleh perusahaan maupun mahasiswa dalam mengolah data adalah R-Studio Statistik. Ini adalah sebuah program yang mampu mengolah dan menganalisa data dengan memberikan informasi dalam bentuk statistika deskriptif.

Hingga saat ini R-Studio Statistik merupakan 10 bahasa pemrograman terpopuler di Indonesia. Salah satu alasan mengapa program ini banyak digunakan adalah karena kemudahannya dalam mengolah data. Selain itu, R dikembangkan secara open source sehingga dapat digunakan secara legal dengan gratis.

Persiapan Penggunaan R-Studio

Dikarenakan kelebihan-kelebihan yang dimiliki tersebut, R-Studio begitu populer dan menarik semakin banyak peminat. Bagi yang ingin memulai, berikut adalah beberapa langkah yang harus dipersiapkan:

1. Mempersiapkan Data yang akan Dianalisa

Salah satu kelebihan dari Program R adalah kemampuannya dalam mengolah dan menganalisa data dengan jumlah yang banyak. Jadi, meskipun jumlahnya banyak, program tetap mampu mengolah dan menunjukkannya dalam bentuk statistika deskriptif. Sebelum memasukkan data ke dalam program, pastikan bahwa data sudah disimpan dalam format yang dibutuhkan. Salah satu format terumum adalah excel.

2. Download dan Install R & R-Studio

Karena program ini merupakan open source, maka program dapat diunduh secara gratis dari halaman resminya. Jika ada update atau perbaikan sistem, maka akan langsung tersedia di halaman resminya pula. Pastikan untuk mengunduh program sesuai dengan sistem komputer masing-masing.

Selanjutnya, install program ke dalam PC dan pastikan bahwa program sudah terinstall dengan baik, Jika instalasi dilakukan dengan benar, maka akan muncul ikon R pada desktop di akhir proses.

3. Import Data

Tahap selanjutnya adalah memasukkan data ke dalam program R-Studio. Pilihlah data yang ingin diolah dan dianalisis dan import ke dalam program. Output dari program ini berbagai macam dari grafik, mean, diagram dan masih banyak lagi. Selanjutnya, simpanlah data dalam bentuk yang diinginkan, bisa di word, excel, bahkan txt.

Meskipun tergolong mudah, namun baik para pekerja maupun mahasiswa seringkali mengalami kesulitan dalam mengelola data dengan R-Studio Statistik. Jika hal ini terjadi, tidak perlu khawatir atau panik karena kami adalah solusinya.

Kami adalah solusi yang dicari karena kami siap membantu segala masalah yang ada. Kami siap membantu perusahaan maupun mahasiswa yang membutuhkan bantuan untuk mengolah dan menganalisa data menjadi lebih mudah. Dengan kami, segala masalah pengolahan dan data akan terselesaikan dengan cepat. Jadi, jangan ragu untuk menghubungi kami untuk lebih lanjut.

Kategori
Jasa Olah Data Jasa Skripsi Tesis Disertasi Konsultasi Susun Skripsi

Belajar dan Mengetahui Cara Menggunakan R-Studio

Segala hal yang berhubungan dengan statistika tidak pernah mudah prosesnya. Pengerjaan secara manual seringkali menyebabkan error dan kesalahan yang membuat datanya tidak valid. Oleh karena itu, dibuatlah sebuah bahasa pemrograman dan sistem perangkat lunak untuk membantu proses tersebut. Bahasa pemrograman tersebut dikenal dengan R-studio, yang dikenal sejak 1993. Sejak itu, banyak yang mencari tahu cara menggunakan R-Studio.

Tujuan utama dari R-Studio ini adalah untuk mengolah dan menganalisis data agar bisa memberikan output sesuai yang diinginkan pengguna. Namun, agar bisa mendapatkan hal tersebut, tentunya harus mengetahui cara penggunaan yang benar. Berikut adalah langkah-langkah mudah untuk menggunakan program tersebut:

1. Download & Install R & R Studio pada Komputer/ Laptop

Hal pertama yang harus dilakukan adalah dengan download dan menginstalnya ke PC. Bisa juga mengunduh aplikasi tersebut pada halaman resminya secara gratis. Pastikan untuk mengunduh aplikasi yang sesuai versi sistem operasi PC. Selanjutnya, install aplikasi dengan menjalankan installer R pada PC.

Untuk melihat apakah aplikasi sudah terinstall dengan baik, cobalah penggunaan perintah R–version. Jika tidak muncul perintah apapun, berarti tidak ada masalah. Namun, apabila muncul perintah command not found, maka kemungkinan program tidak terinstall dengan baik dan belum bisa digunakan.

2. Menyiapkan Data yang akan Diolah

Selanjutnya, siapkan data yang akan diolah dan dianalisis oleh program. Pastikan data telah tersimpan dengan format yang telah ditentukan agar bisa dibuka pada program. Untuk merubah datanya menjadi lebih rapi dan menambahkan atribut information bisa merubahnya di excel. Lalu simpan data tersebut dalam bentuk excel workbook.

3. Buka Program & Masukkan Data

Untuk memulai penggunaan R-Studio, bukalah program tersebut terlebih dahulu. Selanjutnya, pilih Packages dan perintah Rcmdr. Nantinya akan muncul sebuah layar yang berisi dua kotak kosong. Pada bagian menu, pilih Data, Import Data, pilih from Excel lalu pilih data yang tadi telah disimpan.

4. Melihat Ringkasan Data

Apabila ingin melihat ringkasan data, maka pilihlah menu Statistic. Pada bagian tersebut ada banyak pilihan yang bisa dipilih, dari mean, average hingga grafik persebaran sesuai dengan variabel yang diinginkan. Jadi, pilihlah sesuai dengan data atau tampilan yang diinginkan atau dibutuhkan.

Jadi, program R-Studio ini sangat membantu meringkas dan menampilkan data dalam waktu yang cepat. Perhitungan dan analisisnya dapat menggunakan excel biasa, namun prosesnya akan lama dan bisa jadi salah. Untuk menghindari hal tersebut, maka sebaiknya menggunakan program R untuk mendapatkan hasil yang lebih cepat dan akurat.

Namun, bagi yang merasa kesulitan menguasai cara menggunakan R-Studio tidak perlu khawatir. Kami hadir untuk membantu para pekerja maupun mahasiswa yang membutuhkan olahan data agar siap dipakai. Kami dapat mengolah berbagai macam data dengan menggunakan berbagai program. Jadi, bagi yang mengalami kesulitan, jangan ragu untuk menghubungi kami.