Kategori
Jasa Olah Data Jasa Skripsi Tesis Disertasi

Memahami Hasil Penelitian Skala Likert

Beberapa dari kalian mungkin masih asing mendengar istilah skala Likert. Peneliti biasanya menggunakan skala Likert untuk mengukur data dalam sebuah penelitian. Supaya kalian lebih paham, bacalah secara rinci artikel tentang memahami hasil penelitian skala Likert berikut ini.

Belajar Memahami Hasil Penelitian Skala Likert

Rensis Likert, seorang psikolog, mengembangkan skala Likert pada tahun 1932 sebagai metode pengukuran untuk menilai sikap, opini, atau persepsi responden terhadap suatu pernyataan atau pertanyaan. Berikut adalah penjelasan mengenai pengertian skala Likert:

Pengertian Skala Likert

Rensis Likert adalah seorang ahli psikologi sosial berasal dari Amerika Serikat. Ilmuwan asal Amerika tersebut berhasil mengembangkan skala Likert sejak tahun 1932. Menurutnya, skala Likert adalah alat pengukur yang berguna untuk menilai sikap atau pendapat mengenai suatu pernyataan.

Menurut Sugiyono skala Likert merupakan skala untuk mengukur pendapat, sikap, dan persepsi mengenai suatu fenomena sosial. Sementara itu, menurut Anwar skala Likert merupakan metode pengukuran atas pernyataan sikap. Menggunakan respons sebagai penentu nilai dalam sebuah penelitian.

Peneliti menggunakan skala Likert sebagai alat pengukuran dalam kuesioner atau survei untuk mengukur sikap atau persepsi responden terhadap serangkaian pernyataan. Responden menunjukkan tingkat persetujuan atau ketidaksetujuan mereka terhadap setiap pernyataan yang diberikan

Lima Bentuk Skala Likert

Para peneliti mengembangkan berbagai bentuk skala Likert. Mereka harus menyesuaikan bentuk atau pilihan tersebut berdasarkan penelitian. Peneliti biasanya menggunakan lima jenis pilihan dalam penelitian skala Likert, antara lain:

1.  Responden menunjukkan sikap afirmatif terhadap pernyataan yang diajukan dengan memilih ‘Setuju (S)’

2.  Netral (N), tanda bahwa responden ragu atau tidak dapat menentukan pilihan mereka.

3.  Sangat Setuju (SS), mengartikan responden sudah sangat setuju dengan pernyataan peneliti.

4.  Tidak Setuju (TS), apabila responden tersebut tidak setuju dengan pernyataan dari peneliti.

5.  Sangat Tidak Setuju (STS), menyatakan bahwa responden sangat tidak setuju dengan pernyataan yang dilontarkan oleh peneliti.

Rumus Skala Likert

Berdasarkan jawaban responden dari hasil penelitian skala Likert melalui pertanyaan ataupun pernyataan. Selanjutnya, dianalisis dengan melihat hasil skor dari masing-masing kategori.

Jika jawaban dari pertanyaan tersebut bernilai positif. Peneliti memberikan nilai 5, 4, 3, 2, dan 1 untuk jawaban pernyataan positif. Sementara itu, untuk pernyataan bernilai negatif, peneliti memberikan nilai 1 sampai 5 atau dari -2 sampai 2. Kemudian, peneliti menghitung hasil dari perhitungan nilai tersebut menggunakan rumus.

Rumus skala Likert yaitu TxPn. T berarti jumlah responden yang memilih. Sedangkan, Pn bermakna pilihan angka skor Likert. Hasil tersebut nantinya akan dianalisis agar menghasilkan variabel tambahan pada sebuah penelitian.

Setelah membaca artikel di atas kalian pasti sudah paham akan penelitian skala Likert. Untuk memahami lebih lanjut kalian bisa mencari tahu materi mengenai metode dan contoh skala Likert. Hal tersebut berguna sebagai bahan referensi bagi kalian yang hendak melakukan penelitian.

http://Memahami Hasil Penelitian Skala Likert

Kategori
Jasa Olah Data Jasa Skripsi Tesis Disertasi Uncategorized

Pengertian Uji Asumsi Klasik dengan SPSS

Dalam artikel ini akan membahas tentang bagaimana cara menggunakan uji asumsi klasik dengan SPSS. Berikut artikel selengkapnya.

Dalam sebuah analisis data regresi linier sederhana maupun berganda, diperlukan adanya uji syarat atau biasa dikenal dengan uji asumsi klasik. Uji asumsi ini merupakan persyaratan agar hasil  regresi tidak “bias”. 

Sebuah penduga parameter dikatakan tidak bias apabila nilai harapannya sama dengan nilai yang sebenarnya dari parameter itu. Artinya, suatu estimator bersifat tidak bias jika menghasilkan estimasi parameter yang rata-rata benar.

Uji Asumsi Klasik dengan SPSS, Begini Caranya

Uji asumsi klasik merupakan langkah penting dalam analisis regresi untuk memastikan bahwa model yang digunakan memenuhi syarat untuk menghasilkan estimasi yang valid dan dapat diandalkan. Berikut adalah penjelasan tentang bagaimana melakukan uji asumsi klasik menggunakan SPSS, yang melibatkan empat asumsi utama, yakni normalitas, linieritas, heteroskedastisitas, dan autokorelasi.

1. Uji Normalitas

Uji normalitas bertujuan untuk memeriksa apakah distribusi residual mengikuti distribusi normal. Di SPSS, Anda bisa melakukan uji normalitas dengan cara berikut:

  1. Buka SPSS dan masukkan data Anda.
  2. Pilih menu “Analyze” > “Descriptive Statistics” > “Explore”.
  3. Masukkan variabel residual ke dalam kotak “Dependent List”.
  4. Klik “Plots” dan centang opsi “Normality plots with tests”.
  5. Klik “Continue” dan kemudian “OK”.

Hasil uji asumsi klasik dengan SPSS ini akan memberikan dua output utama:

  • Histogram dan Q-Q Plot: Periksa apakah histogram residual mendekati bentuk normal dan apakah titik-titik pada Q-Q Plot berada di sepanjang garis diagonal.
  • Kolmogorov-Smirnov Test atau Shapiro-Wilk Test: Uji statistik ini menguji hipotesis nol bahwa data residual terdistribusi normal. Jika nilai p lebih besar dari 0,05, maka data residual dianggap normal.

2. Uji Linieritas

Linieritas menguji hubungan linear antara variabel independen dan dependen. Untuk uji linieritas di SPSS, ikuti langkah ini:

  1. Pilih menu “Analyze” > “Regression” > “Linear”.
  2. Masukkan variabel dependen dan independen ke dalam kotak yang sesuai.
  3. Klik “Plots” dan seret variabel prediktor ke dalam kotak “Horizontal Axis” dan variabel residual ke dalam kotak “Vertical Axis”.
  4. Centang opsi “Histogram” dan “Normal probability plot”. Klik “Continue” dan kemudian “OK”.

Hasil uji asumsi klasik dengan SPSS yang diharapkan adalah scatter plot yang menunjukkan pola acak tanpa pola sistematik, menandakan hubungan linear.

3. Uji Heteroskedastisitas

Heteroskedastisitas terjadi ketika varians residual tidak konstan. Untuk mendeteksi heteroskedastisitas:

  1. Dari output regresi linear, pilih menu “Analyze” > “Regression” > “Linear”.
  2. Di bawah tab “Plots”, seret variabel prediktor ke dalam kotak “X” dan residual yang telah disimpan ke dalam kotak “Y”.
  3. Pilih “Scatterplot” dan klik “OK”.

Perhatikan grafik scatter plot dari residual. Jika residual tersebar secara acak di sekitar garis horizontal tanpa pola yang jelas, maka tidak ada heteroskedastisitas. Jika ada pola sistematik, mungkin perlu penyesuaian lebih lanjut.

4. Uji Autokorelasi

Autokorelasi terjadi ketika residual dari satu pengamatan terkait dengan residual dari pengamatan lain. Untuk menguji autokorelasi:

  1. Pilih menu “Analyze” > “Regression” > “Linear”.
  2. Masukkan variabel dependen dan independen, lalu klik “Save” dan pilih “Durbin-Watson”. Klik “Continue”.
  3. Klik “OK” untuk menjalankan regresi dan simpan output.

Uji Durbin-Watson dalam output regresi memberikan statistik yang berkisar antara 0 hingga 4. Nilai mendekati 2 menunjukkan tidak adanya autokorelasi. Nilai di bawah 1,5 atau di atas 2,5 menunjukkan masalah autokorelasi.

Melakukan uji asumsi klasik ini dengan SPSS, Anda dapat memastikan bahwa model regresi yang Anda gunakan sesuai dengan asumsi yang diperlukan untuk menghasilkan hasil yang valid. Melakukan langkah-langkah ini dengan benar akan meningkatkan kredibilitas analisis data Anda.

Langkah Antisipasi Jika tidak Berdistribusi dengan Normal

Langkah-langkah antisipasinya antara lain sebagai berikut.

– Pada kotak dialog Linear Regression, klik Save.

– Kemudian muncul kotak dialog Linear Regression, lalu klik Save.

– Kemudian, klik Unstandardized pada Residuals,

– Terakhir Klik Continue untuk melanjutkan.

Gunakan langkah ini sebagai tahap antisipasi agar apabila data tidak berdistribusi normal. Anda bisa mencoba dengan uji normalitas lainnya yaitu kolmogorov-smirnov.

Namun dengan catatan, cara ini tidak membuat data penelitian Anda 100% berdistribusi normal, karena uji kolmogorov-smirnov merupakan uji normalitas lainnya yang memiliki sudut pandang lain dari uji menggunakan Histogram atau Normal Probability Plots.

Demikian pengertian dan cara uji asumsi klasik dengan SPSS. Uji asumsi ini merupakan langkah penting dalam analisis regresi linear untuk memastikan kevalidan model. Dengan memahami dan memenuhi asumsi-asumsi ini akan mendapatkan hasil yang lebih akurat. Semoga bermanfaat.

http://Pengertian Uji Asumsi Klasik dengan SPSS

Kategori
Jasa Olah Data Jasa Skripsi Tesis Disertasi

Perbedaan Statistik Parametrik dan Nonparametrik beserta Kelebihannya

Uji statistik dalam ilmu statistik bermanfaat untuk membuat generalisasi terkait populasi dari sebuah sampel. Uji statistik ini menjadi teknik formal untuk menyimpulkan kewajaran hipotesis.Pengujian hipotesis mengklasifikasikan klasifikasi menjadi dua jenis, yakni parametrik dan nonparametrik. Lantas, apa perbedaan keduanya?

Ketahui Perbedaan Statistik Parametrik dan Nonparametrik

Peneliti sering menggunakan statistik parametrik maupun nonparametrik dalam penelitian. Namun, terdapat banyak perbedaan di antara keduanya. Pembeda ini bermanfaat sebagai acuan penelitian untuk menentukan uji statistik yang tepat. 

Pengertian

Dari segi pengertian, statistik parametrik adalah teknik untuk menguji hipotesis dengan menggunakan parameter populasi. Para peneliti sering menggunakan pengujian ini untuk jenis data rasio atau minimal interval.

Sedangkan untuk statistik nonparametrik tak mempunyai syarat dan tidak melibatkan perkiraan nilai populasi seperti pada uji statistik parametrik. Pengujian data statistik parametrik merupakan data berdistribusi normal. Berbeda dengan uji statistik nonparametrik, untuk data tak harus berdistribusi normal. 

Metode dan Penggunaan

Dari segi metode penggunaan, uji statistik parametrik dan nonparametrik mempunyai beberapa variasi. Pada uji parametrik berupa Uji-T, Anova dan Regresi. Uji-T berguna untuk menguji signifikansi kelompok sampel lebih dari satu. Lalu Anova untuk menguji perbedaan dua rata-rata atau lebih dan Regresi menguji pengaruh variabel terikat dan bebas. 

Sementara itu, untuk uji nonparametrik terdiri dari Uji Tanda, Spearman dan Wilcoxon. Untuk Uji Tanda dapat mengetahui perbedaan sebelum dan sesudah perlakuan. Spearman untuk mengukur keeratan hubungan dua variabel dan Wilcoxon mengukur perbedaan antara dua kelompok data berpasangan dan berskala ordinal. 

Kelebihan

Baik itu uji statistik parametrik maupun non parametrik mempunyai kelebihan tersendiri. Kelebihan statistik parametrik adalah tidak membutuhkan pengujian parameter populasi. Peneliti menganggap pengujian ini memenuhi syarat karena data observasi dinilai saling bebas dan memiliki distribusi normal dari populasi dengan varian homogen.

Sedangkan kelebihan statistik nonparametrik merupakan pengujian pada data dengan pengamatan secara nyata. Pengujian ini mudah dilakukan, pasalnya tak membutuhkan asumsi. Pada umumnya bersifat kualitatif dan tidak membutuhkan adanya urutan. 

Jadi, perbedaan utama antara statistik parametrik dan nonparametrik terletak pada penerapan, ukuran tendensi sentra dan informasi populasi. Kemudian berbeda dari segi pengukuran variabel dan cara mengukur derajat hubungan dua variabel kuantitatif. 

http://Perbedaan Statistik Parametrik dan Nonparametrik

Kategori
Jasa Olah Data Jasa Skripsi Tesis Disertasi

Mengenal Tentang Metode Z-Test dalam Ilmu Statistika

Metode Z-Test merupakan salah satu teknik analisis statistika yang cukup penting. Z-Test berfungsi untuk menguji hipotesis terkait rata-rata populasi. Terutama jika jumlah sampel yang akan diteliti relatif besar.

Mengenal Secara Detail Tentang Metode Z-Test

Dalam bidang ilmu statistik khususnya analisis inferensial, kita biasa mendengar tentang Uji Student-T atau Student-T Test. Namun ternyata, ada satu metode yang tidak kalah penting yaitu Uji Z atau Z-Test.

Metode ini telah lama menjadi instrumen pokok dalam penelitian ilmiah maupun pengambilan keputusan berbasis data. Z-Test sendiri akan berguna saat ingin menguji apakah suatu rata-rata sampel mewakili populasi dari seluruh objek penelitian. Terutama ketika sampel yang diteliti cukup besar, melebihi 30 observasi.

Tujuan utamanya yaitu menentukan apakah perbedaan rata-rata antara sampel serta populasi tersebut signifikan secara statistik, atau hanya karena fluktuasi acak. Proses analisisnya dengan memanfaatkan distribusi normal standar atau distribusi Z. Rumus Z test sendiri adalah Z = (x̅ – μ0) / (σ /√n).

Dengan keterangan:

  • x̅: mean sampel
  • μ0: rata-rata populasi
  • σ: simpangan baku
  • n: ukuran sampel

Sementara itu, langkah-langkah penerapan metode Z-Test adalah sebagai berikut:

1. Menyusun Hipotesis

Langkah pertama adalah merumuskan hipotesis nol (H0) dan hipotesis alternatif (Ha). Hipotesis nol biasanya menyatakan bahwa tidak ada perbedaan signifikan antara rata-rata sampel dan populasi. Sementara hipotesis alternatif menyatakan sebaliknya.

2. Menentukan Tingkat Signifikansi

Selanjutnya menentukan tingkat signifikansi yang biasanya sudah terpilih sebelumnya. Misalnya 0.05 atau 0.01 yang menunjukkan probabilitas untuk menolak hipotesis nol ketika sebenarnya “benar”.

3. Menentukan Daerah Kritis dalam Metode Z-Test

Dalam metode Z-Test kita juga perlu menentukan daerah kritis sebagai rentang nilai Z untuk menolak hipotesis nol. Daerah kritis ini terbentuk berdasarkan tingkat signifikansi yang terpilih serta jenis uji yang peneliti lakukan.

Itu artinya, jika nilai Z berada dalam daerah kritis, maka hipotesis nol ditolak. Begitu juga sebaliknya, apabila nilai Z berada di luar daerah kritis, hipotesis nol tidak dapat ditolak.

Dari proses di atas, jika hipotesis nol ditolak, kita dapat menyimpulkan bahwa terdapat perbedaan signifikan antara rata-rata sampel dengan populasi. Jika tidak, maka tidak ada cukup bukti untuk menyimpulkan adanya perbedaan keduanya. Begitulah kurang lebih mengenai metode Z-Test, semoga informasinya bermanfaat!

Baca Juga : Cara Membuat Layout di ArcGIS Pro, Tahapan Akhir dalam Pembuatan Peta

Kategori
Jasa Buat Peta Jasa Skripsi Tesis Disertasi

Penjelasan Metode Gravity yang Penting dalam Survei Geofisika

Penjelasan metode gravity dapat membantu untuk mempermudah kita dalam memahami metode tersebut. Awal mulanya ilmu geofisika yakni dengan teori sifat magnetik bumi yang di temukan oleh Gilbert. Sedangkan teori gravitasi dari Newton. Geofisika sendiri mempunyai arti yang berkaitan dengan fisika bumi dan atmosfer yang menyusunnya. Sedangkan salah satu yang termasuk dari metode geofisika adalah gravitasi.

Awalnya metode di gunakan guna mengetahui kondisi struktur bagian bawah permukaan. Selain itu juga untuk mengetahui aktivitas dari gunung berapi. Namun seiring perkembangannya zaman metode gravitasi juga menjadi salah satu metode geofisika pertama yang di gunakan guna melakukan eksplorasi minyak serta gas alam.

Ini Penjelasan Metode Gravity 

Perlu Anda ketahui bahwa metode gravitasi merupakan salah satu metode yang di gunakan dalam survei geofisika. Selain itu metode yang satu ini juga termasuk dalam metode pasif. Penggunaan teori gravitasi ini juga memanfaatkan perbedaan nilai medan gravitasi yang berada di permukaan bumi. Variasi dari nilai medan gravitasi tersebut nantinya di petakan distribusinya. Faktanya, gravitasi bumi pada permukaan tidaklah homogen saja.

Lebih tepatnya gravitasi tersebut di pengaruhi oleh massa jenis benda termasuk batuan yang menjadi penyusun kerak bumi. Batuan-batuan dengan massa jenisnya yang berbeda tersebut juga akan berpengaruh terhadap medan gravitasi bumi pada bagian permukaan. Variasi daerah gravitasi pada bagian permukaan tersebut juga bisa di pengaruhi oleh struktur geologi yang berada di permukaan bagian bawah. Termasuk ketidakmerataan kondisi topografi.

Sehingga posisi pengamatan juga harus mempunyai pengaruh terhadap pengukuran. Dengan demikian itu metode gravitasi adalah sebuah metode yang di gunakan guna mengetahui kondisi struktur bawah permukaan dengan berdasarkan variasi medan gravitasi bumi pada bagian permukaan. Nantinya hasil dari penggunaan metode tersebut akan di sajikan dalam bentuk model bawah permukaan.

Satuan Pengukuran

Prinsip dasar fisika yang mendasari tentang teori gravitasi merupakan hukum Newton yang berkaitan dengan gaya tarik-menarik antarpartikel. Dari besaran gaya tarik-menarik tersebut kita bisa mengetahui besar medan yang dapat mempengaruhi alat ukur yang di gunakan. Akuisisi data dari gravitasi juga di bagi menjadi dua. Pertama pengukuran secara relatif dan yang kedua pengukuran secara absolut.

Satuan pengukuran yang di gunakan dalam teori gravitasi biasanya di nyatakan dalam Galileo atau gal. Jika dalam satuan internasional gal itu di nyatakan dengan M/s ^2. 1 Galileo sama dengan 1 cm/s^2 = 0,01 M/s^2. Sedangkan rata-rata gravitasi pada permukaan bumi sekitar 980. Berbeda dengan data pengukuran medan gravitasi pentingnya akan mengandung anomali yang terdiri dari efek regional dan efek lokal. Efek lokal adalah sasaran pengukuran mikro gravitasi. Efek yang satu ini juga akan membawa anomali medan gravitasi sangat dekat dengan permukaan. Jadi penjelasan metode gravity menjadi utama dan penting yang harus di pahami baik guru, siswa dan lainnya.

Baca Juga:

Mengenal Metode Analisis Difference in Differences (STATA)

Kategori
Jasa Skripsi Tesis Disertasi

Mengenal Aplikasi ATLAS.ti, Memperdalam Analisis Kualitatif dalam Penelitian

Aplikasi atlas.ti merupakan salah satu software penting pada analisis kualitatif. Di mana metode ini sering melibatkan jumlah data besar dan kompleks.

Sehingga memerlukan alat bantu canggih untuk memahami dan menyusun temuan dengan lebih sistematis. Karena memiliki peran penting mendapatkan pemahaman mendalam tentang pengalaman, persepsi, dan makna terkait. 

Apa Itu Aplikasi Atlas.Ti?

ATLAS.ti adalah perangkat lunak analisis kualitatif yang dirancang khusus untuk membantu peneliti. Dalam mengorganisir, mengelompokkan, serta menganalisis file kualitatif. 

Aplikasi ini memungkinkan para peneliti untuk mengelola berbagai jenis file. Termasuk  jenis teks, gambar, audio, video, dan dokumen lainnya. 

Aplikasi atlas.ti juga dilengkapi dengan berbagai fitur analisis yang kuat. Sehingga memungkinkan para peneliti untuk menyelami data serta menggali temuan yang mendalam. Berikut merupakan detail untuk fitur yang ada:

  1. Import Data Multi-Format

ATLAS.ti mendukung berbagai format file, termasuk dokumen teks, file audio, video, gambar, dan data dari platform sosial media. Dengan demikian, para peneliti dapat mengimpor serta mengintegrasikan dari berbagai sumber dengan mudah.

  1. Organisasi Data

Aplikasi ini memungkinkan pengorganisasian file secara sistematis dalam proyek-proyek yang terpisah. Dengan kemampuan membuat tag, kategori, serta label. 

  1. Pendekatan Kualitatif dan Kuantitatif

ATLAS.ti menggabungkan pendekatan kualitatif dan kuantitatif dalam analisis file. Ini berarti bahwa selain menyelami temuan kualitatif, peneliti juga dapat melakukan statistik deskriptif dengan mudah.

  1. Coding dan Anotasi

Aplikasi atlas.ti ini memungkinkan para peneliti untuk melakukan coding atau penandaan data dengan mudah. Sehingga mempermudah identifikasi pola dan temuan penting.

  1. Analisis Visual

ATLAS.ti dilengkapi dengan fitur visualisasi yang kuat. Seperti diagram jaringan dan pohon konsep yang membantu peneliti untuk menyajikan hasil analisis. 

  1. Mengelola Kutipan

Aplikasi ini memungkinkan peneliti untuk menyimpan serta mengelola kutipan atau cuplikan penting dari file. Sehingga memudahkan dalam merujuk serta mengutip temuan dalam laporan penelitian.

Aplikasi atlas.ti  merupakan alat yang sangat berharga bagi peneliti kualitatif. Karena bisa membantu alam menghadapi tugas yang kompleks dalam analisis data. 

Dengan berbagai fitur analisis dan pengorganisasian yang kuat. Sehingga para peneliti dapat memperdalam pemahaman mereka terhadap data kualitatif serta menghasilkan temuan yang berarti secara lebih efisien. 

Penggunaan nya akan membantu memajukan kualitas penelitian kualitatif. Dan aplikasi atlas.ti  dapat memberikan kontribusi yang berarti dalam penemuan ilmiah di berbagai bidang studi.

Baca juga:

Apa Itu SNA (UCINET VI)? Ini Jawabannya

Kategori
Jasa Skripsi Tesis Disertasi Konsultasi Susun Skripsi Uncategorized

Berkenalan dengan Design of Experiments (DoE)

Design of Experiments memiliki peran yang penting dalam berbagai bidang khususnya pada bidang bisnis. Bisa juga dikatakan bahwa DoE merupakan salah satu teknik untuk merencanakan dan merancang suatu eksperimen dari sebuah produk, sistem, dan proses. Melihat luasnya fungsi dari DoE ini, maka tidak heran banyak yang memanfaatkan teknik DoE ini.

Apa Itu Design of Experiments?

Agar lebih memahami dan mengerti mengenai DoE tentunya Anda harus tahu apa pengertian dari istilah DoE, bukan? Selanjutnya Anda bisa mempelajari apa saja manfaat dari DoE. Teknik DoE bisa Anda proses menggunakan aplikasi bernama Design Expert. Aplikasi ini akan memudahkan Anda untuk mengaplikasikan teknik DoE ini.

Di bawah ini adalah pembahasan singkat mengenai DoE yang dapat Anda simak. Pahami betul agar Anda tidak kesulitan untuk memasukkan teknik ini pada kerangka berpikir Anda.

Pengertian

Design of Experiments atau yang lebih pendeknya DoE adalah suatu perkakas untuk menemukan faktor-faktor yang memberikan pengaruh signifikan terhadap kualitas, korelasi, serta menghitung besarnya pengaruh tersebut. Metode statistik ini bermanfaat untuk meningkatkan kualitas dari sebuah produk, sistem, dan proses sekalipun.

Macam-Macam Metode Design of Experiments

DoE memiliki beberapa macam metode yang dapat Anda pilih dan aplikasikan menggunakan Design Expert. Berikut ini adalah beberapa metode dari DoE yang dapat Anda pelajari dan ketahui.

Desain Faktorial

Metode desain ini bertujuan untuk mencari tahu interaksi antara faktor-faktor yang Anda uji. Anda dapat melihat apakah faktor tersebut saling mendukung atau saling menghambat saut sama lain.

Desain Mixture

DoE dengan metode desain mixture dapat Anda gunakan untuk mencari formulasi yang paling optimal antara campuran yang terdiri dari 2 hingga 24 komponen yang berbeda.

Metode Taguchi

Bagi Anda yang ingin membuat produk, sistem, atau proses berkualitas tinggi dengan biaya rendah akan sangat tepat bila menggunakan metode Taguchi.

Metode RSM

Metode ini lebih cocok untuk menentukan hubungan fungsional antara variabel respon dan variabel independen. Tujuan dari metode RSM adalah penentuan level dan nilai dari faktor yang optimal tersebut.

Nah, demikianlah pembahasan singkat mengenai Design of Experiments. Silakan Anda mempraktikkan pengujian DoE menggunakan Design Expert untuk lebih memahami teknik perancangan dan perencanaan yang satu ini.

Baca juga:

Pengujian Analisis Variasi (ANOVA) Menggunakan Aplikasi Design Expert

Kategori
Jasa Skripsi Tesis Disertasi

Memahami Apa Itu Quality by Design (QbD)

Anda yang berkecimpung pada dunia farmasi tentu sudah tidak asing lagi dengan istilah Quality by Design (QbD). Namun, apakah Anda sudah benar-benar paham dengan istilah itu sendiri? Bagi seorang yang ada di dunia farmasi tentunya harus paham betul mengenai istilah yang satu ini. 

Apa Sih Makna dari Quality by Design?

Istilah ini sendiri tidak bisa terpisahkan dari CPOB atau Cara Pembuatan Obat yang Baik. Oleh karena itu, Anda harus paham betul agar dapat membuat obat dengan jaminan mutu dan kualitas terbaik.

Berikut ini adalah penjelasan mengenai istilah yang dapat Anda pelajari.

Pengertian Quality by Design

Istilah yang mewakili pendekatan secara sistematis dalam pengembangan obat-obatan. Pendekatan ini mengacu pada cara ilmiah dan Quality Risk Management sehingga dapat meningkatkan keamanan dan mutu produksi obat-obatan. Sekarang, Anda sudah paham bukan mengapa QbD tidak bisa terpisahkan dengan CPOB?

Tujuan Adanya Quality by Design

Adanya pendekatan ini tentu memiliki tujuan tersendiri sehingga harus ada pada setiap proses pembuatan obat. Anda tidak bisa masuk ke tahap pengujian obat menggunakan aplikasi Design Expert bila QbD belum bagus.

Berikut ini adalah tujuan-tujuan adanya pendekatan ini pada proses pembuatan obat-obatan atau produk kesehatan lainnya.

  • Meningkatkan spesifikasi kualitas produk berdasarkan kinerja klinis.
  • Mengurangi kemungkinan kegagalan atau ketidaksesuaian produk kesehatan yang akan diproduksi.
  • Meningkatkan kualitas pengembangan produk kesehatan yang sudah ada dan memberikan efisiensi proses manufaktur.
  • Meningkatkan proses analisis terhadap akar permasalahan dasar pembuatan produk dan manajemen perubahannya.

Tahapan tersebut telah membuktikan bahwa terjadi kemajuan yang signifikan dalam peningkatan kualitas produk berbasis kinerja klinis. Setiap tujuan dari ini saling berhubungan satu sama lain.

Oleh karena itu, Quality by Design (QbD) merupakan hal yang penting dalam hal pembuatan obat-obatan atau produk lain di dunia farmasi. Sekarang, Anda sudah memahami istilah tersebut dan bisa mengerti lebih dalam mengenai proses pengembangan produk di dunia farmasi.

Baca juga:

Keunggulan Pemrograman Rust Olah Data Penelitian Skripsi Tesis Disertasi

Kategori
Jasa Skripsi Tesis Disertasi Konsultasi Susun Skripsi

Aplikasi dan Perbandingan Algoritma Backprogration Neural Network di MATLAB

Otak manusia dipercaya merupakan organ paling kompleks yang dikenal di alam semesta. Komponen fundamental otak adalah neuron, ada sekitar 100 miliar neuron yang dihubungkan dengan sekitar 100 triliun keterkaitan.terinspirasi dari prinsip komputasi yang dilakukan oleh jaringan saraf biologis otak, sistem komputasi yang disebut dengan jaringan syaraf tiruan dikembangkan.

Backprogration atau Propagasi Balik adalah salah satu dari jaringan saraf tiruan atau neural network yang merupakan bagian dari metode pelatihan yang diawasi oleh Supervised Learning dengan jaringan multi layer dan memiliki ciri khusus meminimalkan error pada output yang dihasilkan oleh jaringan.

Biasanya pada proses klasifikasi Backprogration Neural Network akan dilakukan dengan dua tahap perhitungan, yaitu:

  1. Perhitungan maju yang akan menghitung nilai kesalahan atau error antara nilai output system dengan nilai yang seharusnya
  2. Perhitungan mundur untuk memperbaiki bobot berdasarkan nilai error tersebut.

Jaringan saraf tiruan merupakan salah satu sistem pemrosesan informasi yang didesain dengan menirukan cara kerja otak manusia dalam menyelesaikan suatu masalah dengan melakukan proses belajar melalui perubahan bobot sinapsisnya. Jaringan saraf tiruan mampu mengenali kegiatan berbasiskan data masa lalu. Masa lalu akan dipelajari oleh jaringan saraf tiruan sehingga memiliki kemampuan untuk memberikan keputusan pada data yang belum pernah dipelajari.

Jaringan saraf tiruan didasarkan pada beberapa asumsi :

  1. Pengolahan informasi terjadi pada neuron
  2. Sinyal-sinyal dilewatkan diantara neuron melalui rantai penghubung
  3. Masing-masing rantai penghubung akan mengalihkan sinyal yang ditransmisikan
  4. Masing-masing neuron menggukan fungsi aktivasi pada jaringan masukkannya untuk menentukakn sinyal keluaran.

Aplikasi dan Perbandingan Algoritma Backprogration Neural Network di MATLAB

Jaringan Backprogration Neural Network adalah jaringan saraf yang paling banyak diterapkan. Ada sejumlah algoritma saat ini. Kekuatan dan kelemahan masing-masing dari 8 jenis algoritma Backprogration Neural Network yang disediakan oleh toolbox jaringan saraf di MATLAB dipelajari untuk memilih algoritma yang lebih tepat dan lebih cepat dalam kondisi yang berbeda. Berdasarkan hal tersebut, pengukuran tingkat vakum dengan metode magnetron-discharge diambil sebagai contoh untuk melakukan simulasi, langkah-langkah konvergensi dari berbagai algoritma Backprogration Neural Network dibandingkan dalam situasi yang berbeda, properti konvergensi cepat dari trainlm dikonfirmasi , diperoleh kesimpulan bahwa algoritma Backprogration Neural Network dapat meramalkan tingkat kevakuman.

Kategori
Jasa Olah Data Jasa Skripsi Tesis Disertasi Konsultasi Susun Skripsi

Ant Colony Algorithm pada Aplikasi R-Studio

Masalah merupakan suatu hal yang akan sering muncul didalam kehidupan entah pada diri kita sendiri ataupun pada hal yang lebih besar seperti organisasi. Untuk menyelesaikan masalah tersebut bisa dilakukan beberapa hal semisal melalui logika pada pikiran kita atau mengikuti arus penyelesaian masalah pada suatu teori. Banyak teori-teori yang diciptakan dengan berujung pembuatan suatu algoritma untuk memecahkan masalah seperti ant colony algorithm.

Apa itu Ant Colony Algorithm?

Biasa disebut dengan ACO (ant colony optimization), salah satu jenis dari algoritma diciptakan untuk mencari suatu jalur melalui titik-titik paling rendah dari suatu jarak yang paling rendah untuk menyelesaikan suatu permasalahan. Seperti dengan halnya semut yang akan menyelesaikan masalah mereka ketika menuju ke jalur makanan yang ingin mereka tuju dengan mencari jarak paling dekat agar mereka bisa cepat sampai ke tujuan makanan mereka.

Algoritma ant colony optimization inipun dikenal sebagai teknik dari sebuah probabilitas atau sebuah peluang untuk menyelesaikan masalah komputasi atau cara untuk menemukan suatu titik penyelesaian dari suatu masalah dengan input data menggunakan suatu algoritma melalui grafik.

Untuk menggunakan algoritma jenis inipun tidak bisa asal ketik atau langsung menggunakan code dari ant colony optimization. Diperlukan beberapa jenis software pemrograman yang software tersebut memiliki fungsi yang bisa mengoperasikan suatu algoritma atau yang biasa kita kenal sebagai coding. Untuk software tersebut anda bisa mempraktekannya dengan menggunakan R studio software.

Mengenal Apa Itu R Studio?

R studio merupakan software IDE ( Integrated Development Environment ) atau lingkungan pengembangan integritas yang digunakan untuk suatu pemrograman R. Pemrograman tersebut merupakan bahasa dari pemrograman software untuk suatu analisis dari grafik dan statistik sehingga cocok digunakan untuk menggunakan algoritma pemrograman dari ant colony algorithm. Jadi kesimpulannya R studio merupakan software atau perangkat lunak yang digunakan oleh para programmer untuk mengembangkan suatu kode dari perangkat lunak menggunakan analisis grafik ataupun statistik.

Mengapa Menggunakan Software R Studio Untuk Pemrograman ACO?

Aplikasi software dari R studio ini sangat cocok digunakan untuk membuat pemrograman dari algoritma ant colony optimization dalam mengembangkan dari pembuatan suatu jarak tempuh terdekat untuk menyelesaikan suatu masalah. Mengingat bahwa ACO merupakan suatu algoritma yang untuk proses pembuatannya dengan menginput data melalui grafik. R studio sangatlah pas untuk digunakan dalam tipe ant colony optimization ini karena dalam analisisnya menggunakan statistik dan grafik.

Mengapa Menggunakan ACO untuk Memecahkan Suatu Masalah?

Jenis algoritma ini telah dikenal dalam penggunaannya untuk menyelesaikan suatu permasalahan dalam suatu organisasi. Seperti dalam sebuah perusahaan, ant colony algorithm atau ACO digunakan sebagai penyelesaian masalah dalam suatu penjadwalan proyek yang hanya memiliki sumber daya yang terbatas, penjadwalan dari pekerjaan, ataupun masalah-masalah lainnya lagi.