Kategori
Jasa Buat Peta Jasa Olah Data

Beberapa Jenis Skala Pengukuran dalam Statistika

Statistik dan penelitian memandang skala pengukuran sebagai konsep penting karena skala ini menentukan cara mereka mengukur dan menganalisis variabel. Setiap jenis skala pengukuran memiliki karakteristik dan aplikasi yang berbeda, sehingga mempengaruhi rumus dan teknik yang mereka gunakan dalam analisis data. Terdapat empat macam skala pengukuran utama, yakni nominal, ordinal, interval, dan rasio.

Jenis Skala Pengukuran dalam Penelitian dan Statistik

Statistik dan penelitian memandang skala pengukuran sebagai konsep penting karena skala ini menentukan cara mereka mengukur dan menganalisis variabel. Setiap skala pengukuran memiliki karakteristik dan aplikasi yang berbeda, sehingga mempengaruhi rumus dan teknik yang mereka gunakan dalam analisis data. Berikut adalah keempat skala pengukuran tersebut:

Skala Normal

Pada skala ini, pengukuran termasuk dalam kategori kualitatif. Skala normal adalah jenis skala yang paling dasar dibandingkan dengan yang lainnya. Skala ini tidak melakukan perhitungan berbasis angka karena tidak memiliki makna kuantitatif.

Pengumpulan data menggunakan skala normal biasanya dilakukan melalui pertanyaan terbuka atau pertanyaan dengan pilihan ganda yang diberi label. Contoh dari skala pengukuran normal meliputi kategori seperti jenis kelamin, warna rambut, atau lokasi geografis.

Skala Ordinal

Skala ordinal juga termasuk dalam pengukuran kualitatif. Memiliki urutan tertentu yang memberikan peringkat pada data, dan berguna untuk mengevaluasi data yang memerlukan urutan.

Umumnya, skala ordinal digunakan untuk mengukur data yang bersifat non-numerik dan nilai intervalnya tidak diketahui. Contohnya, dalam mengukur tingkat kepuasan, perusahaan dapat menggunakan survei dengan pilihan seperti tidak puas, cukup puas, puas, netral, dan sangat puas.

Skala Interval

Skala interval adalah jenis pengukuran numerik di mana jarak antara nilai-nilai yang berdekatan adalah konsisten. Ini merupakan skala pengukuran kuantitatif.

Pada skala interval, peneliti menganggap nilai 0 sebagai arbitrer, yang berarti mereka tetap dapat mengukur variabel meskipun nilainya negatif. Peneliti dapat menjumlahkan atau mengurangkan data dengan skala interval, tetapi tidak dapat mengalikannya atau membaginya. Contoh penerapan skala interval adalah pengukuran suhu dalam derajat Celsius.

Skala Rasio

Skala ini memungkinkan semua jenis perhitungan dan kesimpulan yang akurat. Berbeda dengan skala interval, skala rasio tidak memiliki nilai negatif. Contoh skala rasio termasuk pengukuran ukuran seperti tinggi badan.

Memahami berbagai jenis skala pengukuran dalam penelitian dan statistik akan mempermudah Anda dalam memilih metode yang tepat. Dengan demikian, hasil penelitian dan analisis dapat menjadi lebih akurat dan tepat.

http://jenis skala pengukuran dalam statistika

Kategori
Jasa Olah Data Jasa Skripsi Tesis Disertasi

Perbedaan Statistik Parametrik dan Nonparametrik beserta Kelebihannya

Uji statistik dalam ilmu statistik bermanfaat untuk membuat generalisasi terkait populasi dari sebuah sampel. Uji statistik ini menjadi teknik formal untuk menyimpulkan kewajaran hipotesis.Pengujian hipotesis mengklasifikasikan klasifikasi menjadi dua jenis, yakni parametrik dan nonparametrik. Lantas, apa perbedaan keduanya?

Ketahui Perbedaan Statistik Parametrik dan Nonparametrik

Peneliti sering menggunakan statistik parametrik maupun nonparametrik dalam penelitian. Namun, terdapat banyak perbedaan di antara keduanya. Pembeda ini bermanfaat sebagai acuan penelitian untuk menentukan uji statistik yang tepat. 

Pengertian

Dari segi pengertian, statistik parametrik adalah teknik untuk menguji hipotesis dengan menggunakan parameter populasi. Para peneliti sering menggunakan pengujian ini untuk jenis data rasio atau minimal interval.

Sedangkan untuk statistik nonparametrik tak mempunyai syarat dan tidak melibatkan perkiraan nilai populasi seperti pada uji statistik parametrik. Pengujian data statistik parametrik merupakan data berdistribusi normal. Berbeda dengan uji statistik nonparametrik, untuk data tak harus berdistribusi normal. 

Metode dan Penggunaan

Dari segi metode penggunaan, uji statistik parametrik dan nonparametrik mempunyai beberapa variasi. Pada uji parametrik berupa Uji-T, Anova dan Regresi. Uji-T berguna untuk menguji signifikansi kelompok sampel lebih dari satu. Lalu Anova untuk menguji perbedaan dua rata-rata atau lebih dan Regresi menguji pengaruh variabel terikat dan bebas. 

Sementara itu, untuk uji nonparametrik terdiri dari Uji Tanda, Spearman dan Wilcoxon. Untuk Uji Tanda dapat mengetahui perbedaan sebelum dan sesudah perlakuan. Spearman untuk mengukur keeratan hubungan dua variabel dan Wilcoxon mengukur perbedaan antara dua kelompok data berpasangan dan berskala ordinal. 

Kelebihan

Baik itu uji statistik parametrik maupun non parametrik mempunyai kelebihan tersendiri. Kelebihan statistik parametrik adalah tidak membutuhkan pengujian parameter populasi. Peneliti menganggap pengujian ini memenuhi syarat karena data observasi dinilai saling bebas dan memiliki distribusi normal dari populasi dengan varian homogen.

Sedangkan kelebihan statistik nonparametrik merupakan pengujian pada data dengan pengamatan secara nyata. Pengujian ini mudah dilakukan, pasalnya tak membutuhkan asumsi. Pada umumnya bersifat kualitatif dan tidak membutuhkan adanya urutan. 

Jadi, perbedaan utama antara statistik parametrik dan nonparametrik terletak pada penerapan, ukuran tendensi sentra dan informasi populasi. Kemudian berbeda dari segi pengukuran variabel dan cara mengukur derajat hubungan dua variabel kuantitatif. 

http://Perbedaan Statistik Parametrik dan Nonparametrik

Kategori
Jasa Olah Data Peta Digital Arcgis Arcview

Fungsi dan Fitur Aplikasi SPSS Statistik dalam Program Analisis

Di era big data seperti sekarang, analisis data menjadi sangat penting untuk mengoptimalkan informasi dan memperoleh wawasan yang berharga. 

SPSS (Statistical Package for the Social Sciences) adalah alat yang sangat kuat bagi peneliti, analis data, dan pengambil keputusan. Oleh karena itu, penting untuk memahami arti dan fitur yang ditawarkan oleh SPSS agar dapat digunakan secara efisien.

Analisis Data dengan Aplikasi SPSS Statistik

SPSS bukan hanya sekadar alat untuk menganalisis data statistik, tetapi juga mampu menjelajahi dan mengungkap wawasan mendalam dari setiap database yang Anda miliki. Ini adalah perangkat lunak yang sangat berfungsi untuk analisis data statistik.

SPSS memiliki antarmuka grafis yang memudahkan pengguna untuk memasukkan data, melakukan uji-t, analisis varians, serta menghasilkan visualisasi data berupa grafik dan tabel. Hal ini menjadikannya alat yang sangat bermanfaat bagi para peneliti, termasuk ilmuwan dan mahasiswa.

Fungsi SPSS Statistik

Setelah memahami pengertian aplikasi SPSS statistik, terdapat banyak fungsi yang dapat ditemukan, antara lain:

1.  Menghitung nilai statistik seperti mean, median, modus, standar deviasi, dan frekuensi data.

2.  Menganalisis hubungan antara variabel dependen dan variabel independen.

3.  Menguji hipotesis statistik untuk menentukan apakah ada hubungan yang signifikan antara variabel.

4.  Mengelompokkan variabel yang saling berkorelasi untuk mengidentifikasi faktor-faktor yang mendasarinya.

5.  Menemukan pola dan tren yang tersembunyi dalam data.

Fungsi-fungsi ini menjadikan SPSS sebagai alat yang kuat untuk analisis data statistik dalam berbagai konteks penelitian dan analisis.

Fitur Aplikasi SPSS

Kemudahan yang ditawarkan oleh aplikasi SPSS dalam pengoperasiannya disebabkan oleh berbagai fitur yang disediakan, antara lain:

1.  Data Editor: Digunakan untuk mendefinisikan, mengedit, memasukkan, dan menampilkan data dengan antarmuka yang serupa.

2.  Viewer: Mempermudah pengguna untuk melihat hasil pemrosesan data secara visual.

3.  Multidimensional Pivot Tables: Membantu dalam pengaturan kelompok data dengan membagi tabel berdasarkan dimensi yang berbeda.

4.  High-Resolution Graphics: Menampilkan data dalam grafik yang memiliki resolusi tinggi, memberikan pengalaman pengguna yang nyaman dalam pekerjaannya.

Fitur-fitur ini membuat SPSS menjadi alat yang efektif dan efisien untuk analisis data statistik, cocok digunakan oleh berbagai kalangan seperti peneliti, analis data, dan akademisi.

SPSS adalah alat bantu yang esensial untuk melakukan analisis data secara efektif. Dengan berbagai fungsi dan fitur lengkapnya, SPSS membantu Anda mengolah data dengan lebih baik. Gunakan aplikasi SPSS statistik untuk mengungkap potensi data Anda dan temukan wawasan yang dapat mendorong kemajuan dalam berbagai bidang.

baca juga:

SPSS Statistik, Kenali Fungsi dan Cara Penggunaannya

Kategori
Jasa Olah Data

Aplikasi NVIVO untuk Pengolahan Serta Analisa Data Kualitatif

Aplikasi NVIVO merupakan sebuah perangkat lunak yang berguna untuk mengembangkan, pendukung dan memanajemen proyek analisis data kualitatif. NVIVO sendiri merupakan singkatan dari NUD*IDT dan Vivo. Melalui gabungan tersebut Tom Richards, seorang programer asli Indonesia, mengembangkannya menjadi sebuah software sejak tahun 1981 silam.

Kehadiran aplikasi ni bertujuan untuk memudahkan para pengguna dalam melakukan pengolahan serta analisis terhadap data kualitatif. Selama ini, penggunaan sistem otomasi untuk analisis data kualitatif masih sangat jarang diterapkan dalam penelitian kualitatif.

Aplikasi NVIVO dan Berbagai Fungsinya

NVIVO merupakan sebuah singkatan dari Non-Numerical Unstructured Data Indexing Searching and Theorizing. Ini merupakan sebuah perangkat lunak besutan NUD*IST dan Vivo yang telah dikembangkan sejak tahun 1982 oleh Tom Richards.

NVIVO sendiri memiliki pengertian sebagai sebuah software yang berguna untuk mendukung, mengembangkan dan memanajemen proses analisis data kualitatif. Nama Vivo dalam perangkat ini berasal dari in-vivo, istilah untuk dari pakar penelitian grounded theory, Strauss and Glasser, yang berarti koding berdasarkan data hidup dan nyata.

Aplikasi ini memungkinkan penelitian yang sering bermasalah dengan coding otomotif dapat terpecahkan. Dengan begitu, pengguna bisa mendapatkan hasil analisa dalam bentuk tabel, diagram, grafik dan scale connector.

Adapun beberapa fungsi dari aplikasi NVIVO ini adalah sebagai berikut:

Manajemen Data

NVIVO memungkinkan pengguna untuk melakukan manajemen data kualitatif. Manajemen data ini biasanya meliputi langkah seperti mengatur, mengimpor dan mengelola data kualitatif, termasuk data foto, video, teks, media sosial dan gambar. Dengan begitu, pengguna bisa lebih mudah untuk mengumpulkan data dalam satu tempat yang terstruktur.

Visualisasi Data

Aplikasi NVIVO juga menyediakan beragam alat visualisasi yang memungkinkan pengguna untuk membuat grafik, bagan dan peta konsep dari data-data mereka. Fungsi ini sangat membantu pengguna dalam merepresentasikan hasil analisis secara visual dan memahami hubungan antara berbagai elemen atau konsep dari sebuah data.

Kolaborasi dan Berbagi

NVIVO juga memungkinkan pengguna untuk berkolaborasi atau terhubung bersama anggota lain dengan lebih mudah. Fitur berbagi dalam aplikasi ini juga membantu pengguna untuk saling berbagi hasil analisis, data dan temuan untuk membentuk tim kerja yang lebih efisien.

Itulah pengertian dari aplikasi NVIVO dan berbagai fungsinya. Melalui aplikasi ini pengguna bisa melakukan analisis terhadap data kualitatif dengan mudah untuk berbagai kebutuhan.

Kategori
Jasa Buat Peta

Penjelasan Fungsi Pembobot Fixed Gausian pada Pemodelan Geographically Weighted Poisson Semiparametric (GWPRS)

GWPRS merupakan metode statistik yang bisa Anda gunakan untuk memodelkan jenis data penelitian dengan karakteristik spasial. Dalam hal ini, ada yang namanya pembobot pada GWPRS untuk meniadakan bias pada sampel survei sehingga sampel tersebut benar-benar mewakili populasi. Anda tentunya penasaran dengan penjelasan fungsi Pembobot Fixed Gausian pada pemodelan Geographically Weighted Poisson Semiparametric (GWPRS). Ulasan ini akan membantu Anda memahami lebih dalam mengenai Pembobot Fixed Gausian ini. 

Menyimak Penjelasan

Pembobot pada suatu metode statistik adalah sebuah pilihan dan para peneliti bisa menggunakan mana pun yang menurut mereka sesuai. Tentu saja hal ini sama dengan metode analisis, pemilihan pembobot ini membutuhkan pertimbangan yang matang.

Berikut ini merupakan penjelasan fungsi Pembobot Fixed Gausian pada pemodelan Geographically Weighted Poisson Semiparametric (GWPRS). Melalui penjelasan singkat ini Anda bisa mendapatkan sedikit gambaran terkait pembobot Fixed Gausian.  

Apa Itu Pembobot Fixed Gausian?

Pembobot Fixed Gausian memiliki nama lain pembobot Fixed Kernel dan menjadi salah satu jenis fungsi kernel yang dapat peneliti gunakan pada berbagai analisis statistik. Rupanya, hal ini karena pembobot Fixed Gausian memiliki karakteristik yang unik.

Fungsi Pembobot

Fungsi dari pembobot Fixed Kernel ini memiliki distribusi yang bentuknya menyerupai lonceng. Anda pastinya penasaran mengenai penggunaan pembobot Fixed Kernel pada GWPRS, bukan? Nah, di bawah ini merupakan beberapa penggunaan pembobot Fixed Kernel yang bisa Anda ketahui. 

  • Untuk meratakan data dan mengestimasi distribusi probabilitas dari suatu data ketika menggunakan teknik smoothing data. 
  • Untuk memprediksi nilai di titik-titik antara pengamatan yang ada pada proses interpolasi data spasial.
  • Untuk meratakan dan menghasilkan model regresi non-parametrik pada regresi kernel.

Demikianlah penjelasan fungsi Pembobot Fixed Gausian pada pemodelan Geographically Weighted Poisson Semiparametric (GWPRS) ini. Informasi mengenai pembobot Fixed Gausian ini tentu akan menambah pengetahuan Anda mengenai GWPRS itu sendiri. Jadi, ketika Anda harus menggunakan metode GWPRS untuk penelitian Anda tidak bingung lagi harus menggunakan pembobot yang mana.

Baca juga:

Tutorial Singkat Analisis Survival Menggunakan SPSS

Kategori
Jasa Olah Data

Metode Arima – Sarima Autoregressive Integrated Moving Average

ARIMA (Autoregresive Integrated Moving Average) merupakan metode prediksi yang berguna dalam meramalkan suatu kasus dengan perbedaan jenis data dan hasil nilai keluaran. Dengan kelebihan dan kekurangannya metode di atas berbagai penelitian dilakukan dengan memanfaatkan metode ini dengan kasus dan data yang berbeda-beda.

Arima merupakan autogressive integrated movig average, sedangkan Sarima adalah seasonal autogresive integrated moving average. Keduanya merupakan metode analisis yang bisa membantu menghasilkan penelitian yang komprehensif.

Metode penelitian Sarima dan Arima merupakan metode analisis untuk time series. Metode ini banyak digunakan pada penelitian di tahun 1990.

Sejarah Metode Arima dan Sarima

Metode Arima – Sarima Autoregressive Integrated Moving Average merupakan metode analisis yang digunakan untuk penelitian time series, moving average, hingga naïve. Dengan menggunakan metode ini, Anda bisa melakukan analisis data time series dengan ketepatan model yang baik.

Data time series sering kali ditemukan dalam berbagai bidang disiplin ilmu seperti ekonomi, pertanian, meteorologi, biologi, serta disiplin ilmu lainnya. Data bentuk time series dapat dicatat berdasarkan periode waktu harian, mingguan, bulanan, tahunan, ataupun periode waktu tertentu lainnya dalam rentang waktu yang sama 

Metode penelitian ini dibuat di tahun 1990-an, dengan menggunakan pola data ACF dan PACF. Metode penelitian ini memang terkesan lebih modern dibandingkan dengan metode time series yang lain, sebab persamaannya lebih kompleks dibandingkan metode analisis yang lain.

Hal yang perlu diingat jika Anda menggunakan metode analisis ini adalah model yang digunakan, pastikan nilai MSE dan MSD yang digunakan sesuai. Jika tidak sesuai, maka metode Arima Sarima ini akan menghasilkan nilai average dan tren yang berbeda dari variabel yang dipakai.

Kategori
Jasa Buat Peta Jasa Olah Data Peta Digital Arcgis Arcview

Grafik dengan Software GraphPad Prism

Salah satu software yang digunakan untuk analisi data statistika dengan pembuatan grafika 2-D adalah GraphPad Prism. Software ini dapat dijalankan pada sistem operasi windows dan macintosh. Pengolahan datanya menggunakan kombinasi efektif antara biostatik, pengepasan kurva dan juga grafik dalam satu program yang komprehensif.

Fungsi GraphPad Prism

  • Prism memungkinkan Anda merancang persamaan sehingga berbagai model dapat dipasang ke berbagai set data.
  • Prism memeriksa model yang ditulis dalam beberapa baris dari atas ke bawah. Dengan kata lain, sebelum menggunakan variabel perantara lebih jauh ke bawah, Anda harus mendefinisikannya terlebih dahulu. Baris terakhir harus menentukan Y. Hal ini kontras dengan cara persamaan kompleks disajikan dalam buku pelajaran matematika dan mematuhi semua norma bahasa komputer.
  • Prism juga memungkinkan Anda menentukan batasan dan transformasi default untuk dilaporkan saat Anda memasukkan persamaan baru. Saat pertama kali mempelajari tentang persamaan yang ditentukan pengguna, Anda dapat menghilangkan fitur opsional ini.

Cara Membuat Grafik pada GraphPad Prism

  1. Langkah pertama dengan membuat proyek baru

Pilih jenis grafik dari prims lalu secara otomatis software akan membuat tabel data secara spesifik sesuai data yang dimasukkan. Ada 5 jenis tabel dan grafik yang disediakan yaitu XY graphs, column graphs, grouped graphs, contingency tables dan survival plots. Penggunaan tabel dan grafik tersebut tentu menyesuaikan kebutuhan yang diinginkan.

  1. Memasukkan atau impor data yang ada

Jika yang dipilih adalah tabel untuk grafik XY maka yang muncul adalah tabel data dengan satu kolom untuk nilai X dan kolom lainnya  bernilai Y. Untuk tabel/grafik yang lain bisa dicoba atau praktikkan sendiri.

  1. Pembuatan grafik

Jika data telah masuk maka secara otomatis software akan membuatkan grafik sesuai dengan jenis pengaturan font bawaan software baik dari segi ketebalan garis, format error bar hingga warna.

  1. Analisi data

Selain pembuatan grafik, software Prism juga membantu kamu untuk fasilitas analisis dan uji statistik, pengepasan kurva hingga mentransformasi serta menormalkan data yang ada. Hal ini tentu sangat berguna bagi kamu untuk lebih mudah mendapatkan hasil data yang lebih sesuai dalam waktu yang singkat.

  1. Memformat grafik

Adanya formatting tools pada software dapat membantu kamu untuk mengubah warna latar dalam pengaplikasian skim warna.  Pada tools ini, kamu bisa mengotak-atik berbagai hal demi keindahan dan kemudahan dalam pembacaan data grafik. Bahkan kamu bisa  copy-paste teks yang terblok dari hasil analisis pada grafik milikmu.

  1. Cetak atau impor

Jika dirasa telah selesai, kamu bisa mengekspor grafik dalam bentuk pdf, emf, eps, tif, bmp, wmf, pcx hingga format jpg dan png. Hasil tersebut bisa kamu gunakan untuk kebutuhan publikasi atau juga mengimpor hasil dalam program lain. Lalu kamu bisa bebas untuk mencetak sesuai kebutuhan yang diinginkan.

Kategori
Jasa Buat Peta Jasa Olah Data

Mengenal Peta Susun Dengan ArcGIS Tools Secara Lengkap: Berikut Ulasannya!

Peta menjadi hal yang tidak terpisahkan dari kehidupan digital masa kini, pasalnya seluruh aktivitas yang dilakukan atas dampak kegiatan online yang dilakukan masyarakat. Seperti misalnya sopir ojek online, kurir paket, pekerja rantau di daerah lain, dan sebagainya. Sehingga peta memiliki peranan yang sangat signifikan pada saat ini baik untuk individu maupun kelompok semacam korporat. Sebelum berbicara lebih lanjut mengenai peta susun atau peta overlay, tahukah kalian apakah itu overlay? Overlay merupakan kemampuan penempatan suatu tools untuk meletakkan grafis peta satu dengan lainnya yang saling bertumpuk lengkap beserta dengan informasi atributnya. Atribut ini sendiri memuat segmentasi populasi, jalan, titik elevasi, pemanfaatan lahan, dan bangunan yang tergambarkan. Tetapi, bagaimanakah hakikat peta ini sendiri?

Memahami Peta Susun Lebih Jauh

Contoh sederhana yang mampu memvisualisasikan jenis peta digital ini adalah peta lereng dan peta curah hujan yang mana lapisannya membentuk poligon baru beserta atributnya untuk mempermudah analisis curah hujan.

Apa Sih Manfaatnya?

Peta digital yang telah terintegrasi digital ini mampu menghilangkan batas antara poligon yang mampu dihilangkan untuk memudahkan pemahaman segmentasi daerah (dissolve themes). Proses penggabungan dua layar (merge themes), clip one themes juga menjadi proses penggabungan yang membantu proses administrasi. Fasilitas lainnya seperti interesct themes atau atribut yang menarik, gabungan fitur dan layer dari peta (union themes), serta gabungan dari keduanya sangat membantu dalam proses penafsiran pada keadaan wilayah tersebut. Komputasi semacam ini dilakukan dengan tools bernama ArcGIS atau SIG (Sistem Informasi Geografis).

Analisis SIG

Tools ArcGIS ini merupakan atribut komputasi yang mampu menggabungkan dua data atau feature yang beragam. Penyusunan dua data tersebut hanya mampu dilakukan dengan fungsi union. Data polygon ini mampu menggabungkan dari layer slope (kemiringan lereng), perumahan, dan batas administrasi. Penyusunan ini membantu staff pemerintah untuk menginformasikan warga. Jadi, tertarikkah kalian menjadi pembuat peta overlay yang penuh manfaat ini?

Kategori
Jasa Buat Peta Jasa Olah Data Jasa Skripsi Tesis Disertasi

Penjelasan Lengkap Metode Map Interpolasi

Interpolasi berupa metode yang sering digunakan dalam memproses data berdasarkan beberapa data yang telah dikumpulkan. Dalam pemetaan, interpolasi adalah proses pendugaan nilai pada suatu area yang tidak tersampel atau tidak terukur, untuk menghasilkan peta atau sebaran nilai di seluruh area tersebut.

Interpolasi spasial mengasumsikan bahwa atribut data kontinu secara spasial dan atribut ini bergantung secara spasial. Metode map interpolasi diperlukan untuk menggeneralisasi data spasial dari kumpulan data sampel ketika data tidak tersedia di seluruh distribusi spasial.

Untuk mencakup seluruh wilayah wilayah studi, data sosial ekonomi satuan keluarga yang diperoleh dari hasil survei disintesiskan dengan metode interpolasi yang tersedia dalam sistem informasi fisik setempat. Keterkaitan langsung antara data sosial ekonomi dan lokasi geografis memerlukan adanya data yang teragregasi secara spasial seperti pendapatan pertanian dan lokasi rumah tangga.

Aspek Penting Metode Map Interpolasi

Interpolasi data spasial memiliki tujuan khusus untuk menginterpolasi dua titik. Interpolasi spasial memperkirakan nilai variabel lapangan yang diberikan untuk menentukan nilai yang dihasilkan, yang tidak ada dalam sampel penelitian dan berada dalam area tertutup di lokasi sampel, atau dalam hal warga negara. bagian sampel. Ada dua jenis interpolasi:

– Interpolasi diskrit (discrete interpolation) adalah interpolasi yang menggunakan asumsi bahwa nilai-nilai antara titik kontrol diketahui tidak kontinu. Jenis interpolasi diskrit meliputi interpolasi derajat 0, poligon Tiesen, poligon Voronoi, dan plot Dirichlet.

– Interpolasi kontinu adalah interpolasi yang menggunakan asumsi bahwa nilai antara titik kontrol dengan nilai yang diketahui adalah kontinu. Jenis interpolasi kontinu termasuk jarak terbalik, kriging, dan splines.

Cara Menggunakan Metode Map Interpolasi

Untuk menggunakan metode map interpolasi ini dalam menganalisa proses tertentu perlu melewati beberapa tahapan proses. Pada kerangka penelitian akan dijabarkan tahapan proses penelitian sebagai berikut ini:

1. Pengumpulan data mentah berikut survei

Untuk tahapan pertama ini berupa survei dan pengumpulan data mentah sebagai bahan yang akan dianalisis. Dengan begitu Anda dapat memaksimalkan beragam bentuk data yang didapatkan. Adapun untuk lebih lengkapnya mengenai data ini dapat diklasifikasikan dengan lebih teratur.

2. Interpolasi dengan metode yang paling tepat

Berdasarkan bahan dan hasil yang diinginkan serta mencakup proses yang paling mendukung untuk menentukan metode interpolasi yang cocok. Karena itu perlu perhatian yang maksimal dengan segala aspek terkait untuk digabungkan bersama. Demikian akan menghasilkan satu kepastian dari proses tersebut.

3. Analisa dan perbandingan

Seperti biasanya untuk tahapan yang terakhir dengan analisa dan tahapan perbandingan lain yang diperlukan. Dengan banyak perbandingan tersebut untuk hasil terbaik yang paling sesuai. Adapun kemudian akan sangat berguna sebagai satu keputusan untuk mendukung berbagai data acak.

Demikianlah rangkaian ulasan mengenai metode map interpolasi yang mungkin perlu Anda ketahui. Semoga membantu dalam menganalisa data yang dibutuhkan untuk kemudian dimaksimalkan pemanfaatannya dengan baik.

Kategori
Jasa Olah Data Jasa Skripsi Tesis Disertasi Konsultasi Susun Skripsi

Mengenal Lebih Jauh Perangkat Lunak Simulasi Flexsim

Flexsim merupakan sebuah perangkat lunak simulasi peristiwa diskrit. Software ini sendiri termasuk buatan Flexsim Software Products, Inc. Untuk kebanyakan produk Flexsim sendiri mencakup lingkungan pemodelan sistem perawatan kesehatan.

Sejarah Pengembangan Simulasi Software Flexsim

Perlu Anda ketahui, bahwa Flexsim mulai berkembang pada tahun 2001 akhir. Tepatnya sebagai proyek pengembangan yang tidak disebutkan dari perusahaan F&H Simulations, Inc, Taylor ED F&H Holland, dan distributor AS produk Taylor II. Proses pengembangan awal bersama Dr. Eamonn Lavery.

Sedangkan untuk proses pengembangan utamanya bersama Anthony Johnson di bulan April 2002. Pada akhir tahun tersebut, proyek pengembangan berganti namanya menjadi Flexsim. Tepat saat F&H Simulation mengubah nama mereka jadi Flexsim Software Product, Inc.

Hingga secara resmi Flexsim 1.0 berhasil rilis tepatnya pada bulan Februari tahun 2003. Software ini sendiri memanfaatkan skema versi perangkat lunak major.minor.build, serta sampai versi 7.7.4. Hingga pada tahun 2016 lalu sudah berubah menjadi skema versi year.update.bugfix.

Penggunaan Software Flexsim di Berbagai Bidang

Tahukah Anda, bahwa Flexsim hingga saat ini sudah banyak membantu berbagai proyek simulasi. Terutama yang melibatkan sistem manufaktur standar dan fleksibel. Oleh sebab itu, ketahui berbagai penggunaan selengkapnya pada penjelasan di bawah ini:

  1. Robotika dan Derek

Pada pustaka objek standar Flexsim terdiri dari berisi objek robot 6-sumbu. Adapun isinya adalah logika gerak dan kemampuan dalam membuat jalur gerak. Software ini sendiri juga berguna untuk memodelkan sekaligus melakukan analisis sel robot di sekitar lingkungan manufaktur.

Hal ini juga termasuk dalam penjadwalan dinamis serta kontrol sel perakitan agar menjadi sebuah robot. Flexsim lewat penggunaan objek derek tersebut juga berguna untuk melakukan evaluasi solusi penjadwalan derek pada lingkungan produksi kapal.

  • Industri 4.0

Software Flexsim bermanfaat untuk mengotomatisasi pengembangan model simulations selama satu dekade lebih. Adapun tren Industri 4.0 yang sedang berlangsung sekarang ini mendorong setiap produsen menuju arah komunikasi dan otomatisasi lebih baik.

Flexsim juga dapat berguna untuk mengembangkan komputer. Perangkat lunak tersebut juga dapat diintegrasikan ke dalam sistem dengan melibatkan komunikasi data secara nyata atau real-time. Tidak heran jika sangat tepat jika berguna bagi perencanaan produksi.

Itu tadi penjelasan lengkap tentang software simulasi Flexsim yang bisa Anda ketahui. Tentu saja masih ada banyak penggunaan perangkat lunak tersebut. Tidak heran jika penggunaannya semakin bermanfaat untuk berbagai bidang di kehidupan manusia.